Machine learning in parameter estimation of nonlinear systems

Accurate parameter estimation in nonlinear dynamical systems remains a fundamental challenge due to noise, limited data, and model complexity. Traditional methods, such as gradient-based optimization and nonlinear least squares (NLS), often struggle under real-world multiplicative noise, exhibiting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, Kaushal (VerfasserIn) , Kostina, Ekaterina (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 09 April 2025
In: The European physical journal. B, Condensed matter and complex systems
Year: 2025, Jahrgang: 98, Heft: 4, Pages: 1-18
ISSN:1434-6036
DOI:10.1140/epjb/s10051-025-00904-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1140/epjb/s10051-025-00904-7
Volltext
Verfasserangaben:Kaushal Kumar and Ekaterina Kostina

MARC

LEADER 00000naa a2200000 c 4500
001 1937101029
003 DE-627
005 20250926100317.0
007 cr uuu---uuuuu
008 250926s2025 xx |||||o 00| ||eng c
024 7 |a 10.1140/epjb/s10051-025-00904-7  |2 doi 
035 |a (DE-627)1937101029 
035 |a (DE-599)KXP1937101029 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kumar, Kaushal  |e VerfasserIn  |0 (DE-588)130324425X  |0 (DE-627)186016188X  |4 aut 
245 1 0 |a Machine learning in parameter estimation of nonlinear systems  |c Kaushal Kumar and Ekaterina Kostina 
264 1 |c 09 April 2025 
300 |b Illustrationen 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.09.2025 
520 |a Accurate parameter estimation in nonlinear dynamical systems remains a fundamental challenge due to noise, limited data, and model complexity. Traditional methods, such as gradient-based optimization and nonlinear least squares (NLS), often struggle under real-world multiplicative noise, exhibiting sensitivity to outliers and high computational demands. This study introduces a neural network framework integrating the Huber loss function to achieve robust and efficient parameter estimation. Applied to canonical dynamical systems, including damped oscillators, van der Pol oscillators, Lotka-Volterra models, and chaotic Lorenz dynamics, the proposed method demonstrates superior accuracy and resilience to noise. Notably, it maintains sub-1.2\% relative errors for key parameters in the Lorenz system, significantly outperforming NLS, which diverges with errors exceeding 12% under identical noise conditions. The use of SiLU activation improves convergence, yielding statistically significant reductions in estimation errors (p < 0.01). Furthermore, the framework operates up to 8 X faster than conventional optimization techniques while reducing root-mean-square error by over 99.9% in high-noise regimes. These results establish a robust, data-driven approach for parameter estimation in complex dynamical systems, bridging machine learning with nonlinear physics and enabling real-time applications in noisy environments. 
700 1 |a Kostina, Ekaterina  |e VerfasserIn  |0 (DE-588)1114183520  |0 (DE-627)868308684  |0 (DE-576)477238904  |4 aut 
773 0 8 |i Enthalten in  |t The European physical journal. B, Condensed matter and complex systems  |d Berlin : Springer, 1998  |g 98(2025), 4, Artikel-ID 60, Seite 1-18  |h Online-Ressource  |w (DE-627)253722926  |w (DE-600)1459068-2  |w (DE-576)072372656  |x 1434-6036  |7 nnas  |a Machine learning in parameter estimation of nonlinear systems 
773 1 8 |g volume:98  |g year:2025  |g number:4  |g elocationid:60  |g pages:1-18  |g extent:18  |a Machine learning in parameter estimation of nonlinear systems 
856 4 0 |u https://doi.org/10.1140/epjb/s10051-025-00904-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250926 
993 |a Article 
994 |a 2025 
998 |g 1114183520  |a Kostina, Ekaterina  |m 1114183520:Kostina, Ekaterina  |d 110000  |d 110400  |e 110000PK1114183520  |e 110400PK1114183520  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
998 |g 130324425X  |a Kumar, Kaushal  |m 130324425X:Kumar, Kaushal  |d 700000  |d 708000  |e 700000PK130324425X  |e 708000PK130324425X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1937101029  |e 4776453126 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Machine learning in parameter estimation of nonlinear systems","title":"Machine learning in parameter estimation of nonlinear systems"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Kumar, Kaushal","given":"Kaushal","family":"Kumar"},{"role":"aut","display":"Kostina, Ekaterina","roleDisplay":"VerfasserIn","given":"Ekaterina","family":"Kostina"}],"note":["Gesehen am 26.09.2025"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1937101029","language":["eng"],"origin":[{"dateIssuedDisp":"09 April 2025","dateIssuedKey":"2025"}],"id":{"doi":["10.1140/epjb/s10051-025-00904-7"],"eki":["1937101029"]},"name":{"displayForm":["Kaushal Kumar and Ekaterina Kostina"]},"physDesc":[{"noteIll":"Illustrationen","extent":"18 S."}],"relHost":[{"id":{"eki":["253722926"],"zdb":["1459068-2"],"issn":["1434-6036"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg","dateIssuedKey":"1998","publisher":"Springer","dateIssuedDisp":"1998-"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"European physical journal","title":"The European physical journal","partname":"Condensed matter and complex systems : EPJ B"}],"recId":"253722926","language":["eng"],"disp":"Machine learning in parameter estimation of nonlinear systemsThe European physical journal. B, Condensed matter and complex systems","type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 31.01.2019"],"titleAlt":[{"title":"The European physical journal / B"},{"title":"EPJ B"},{"title":"Condensed matter physics"}],"part":{"year":"2025","issue":"4","pages":"1-18","text":"98(2025), 4, Artikel-ID 60, Seite 1-18","volume":"98","extent":"18"},"pubHistory":["1.1998 -"]}]} 
SRT |a KUMARKAUSHMACHINELEA0920