Exponential networks for linear partitions

Previous work has given proof and evidence that BPS states in local Calabi-Yau 3-folds can be described and counted by exponential networks on the punctured plane, with the help of a suitable non-abelianization map to the mirror curve. This provides an appealing elementary depiction of moduli of spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Banerjee, Sibasish (VerfasserIn) , Romo, Mauricio (VerfasserIn) , Senghaas, Raphael (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 April 2025
In: SciPost physics
Year: 2025, Jahrgang: 18, Heft: 4, Pages: 1-57
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.4.128
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.21468/SciPostPhys.18.4.128
Verlag, lizenzpflichtig, Volltext: https://scipost.org/10.21468/SciPostPhys.18.4.128
Volltext
Verfasserangaben:Sibasish Banerjee, Mauricio Romo, Raphael Senghaas and Johannes Walcher
Beschreibung
Zusammenfassung:Previous work has given proof and evidence that BPS states in local Calabi-Yau 3-folds can be described and counted by exponential networks on the punctured plane, with the help of a suitable non-abelianization map to the mirror curve. This provides an appealing elementary depiction of moduli of special Lagrangian submanifolds, but so far only a handful of examples have been successfully worked out in detail. In this note, we exhibit an explicit correspondence between torus fixed points of the Hilbert scheme of points on C2⊂C3 and anomaly free exponential networks attached to the quadratically framed pair of pants. This description realizes an interesting, and seemingly novel, "age decomposition" of linear partitions. We also provide further details about the networks' perspective on the full D-brane moduli space.
Beschreibung:Veröffentlicht: 15. April 2025
Gesehen am 30.09.2025
Beschreibung:Online Resource
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.4.128