Unsupervised anomaly detection in the wild

Unsupervised anomaly detection is often attributed great promise, especially for rare conditions and fast adaptation to novel conditions or imaging techniques without the need for explicitly labeled data. However, most previous works study different methods in a constrained research setting with a l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zimmerer, David (VerfasserIn) , Paech, Daniel (VerfasserIn) , Lüth, Carsten (VerfasserIn) , Petersen, Jens (VerfasserIn) , Köhler, Gregor (VerfasserIn) , Maier-Hein, Klaus H. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Deutsch
Veröffentlicht: 05 April 2022
In: Bildverarbeitung für die Medizin 2022
Year: 2022, Pages: 26-31
DOI:10.1007/978-3-658-36932-3_6
Online-Zugang:Resolving-System, kostenfrei, Volltext: https://doi.org/10.1007/978-3-658-36932-3_6
Volltext
Verfasserangaben:David Zimmerer, Daniel Paech, Carsten Lüth, Jens Petersen, Gregor Köhler, Klaus Maier-Hein

MARC

LEADER 00000naa a2200000 c 4500
001 1937406717
003 DE-627
005 20250930132759.0
007 cr uuu---uuuuu
008 250930s2022 xx |||||o 00| ||ger c
024 7 |a 10.1007/978-3-658-36932-3_6  |2 doi 
035 |a (DE-627)1937406717 
035 |a (DE-599)KXP1937406717 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a ger 
084 |a 33  |2 sdnb 
100 1 |a Zimmerer, David  |d 1994-  |e VerfasserIn  |0 (DE-588)1276158033  |0 (DE-627)1828116300  |4 aut 
245 1 0 |a Unsupervised anomaly detection in the wild  |c David Zimmerer, Daniel Paech, Carsten Lüth, Jens Petersen, Gregor Köhler, Klaus Maier-Hein 
264 1 |c 05 April 2022 
300 |a 6 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 30.09.2025 
520 |a Unsupervised anomaly detection is often attributed great promise, especially for rare conditions and fast adaptation to novel conditions or imaging techniques without the need for explicitly labeled data. However, most previous works study different methods in a constrained research setting with a limited number of common types of pathologies. Here, we want to explore a more realistic setting and target the incidental findings in a large-scale population study with 10000 participants using a recent anomaly detection approach. Despite the difficulties in selecting a proper training set in such scenarios, we were able to produce promising quantitative results and detected 31 anomalies which were not reported previously. Evaluation by a radiologist revealed remaining open challenges when it comes to the detection of less conspicuous anomalies. 
700 1 |a Paech, Daniel  |d 1986-  |e VerfasserIn  |0 (DE-588)1080278214  |0 (DE-627)844124893  |0 (DE-576)453464742  |4 aut 
700 1 |a Lüth, Carsten  |e VerfasserIn  |0 (DE-588)1262948428  |0 (DE-627)1810862000  |4 aut 
700 1 |a Petersen, Jens  |d 1988-  |e VerfasserIn  |0 (DE-588)1197162348  |0 (DE-627)1678966665  |4 aut 
700 1 |a Köhler, Gregor  |e VerfasserIn  |0 (DE-588)1237383773  |0 (DE-627)1764084845  |4 aut 
700 1 |a Maier-Hein, Klaus H.  |d 1980-  |e VerfasserIn  |0 (DE-588)1100551875  |0 (DE-627)85946461X  |0 (DE-576)333771222  |4 aut 
773 0 8 |i Enthalten in  |a German Workshop on Medical Image Computing (2022 : Heidelberg)  |t Bildverarbeitung für die Medizin 2022  |d Wiesbaden : Springer Gabler, 2022  |g (2022), Seite 26-31  |h 1 Online-Ressource (xx, 356 Seiten, 142 Abb.)  |w (DE-627)1799312186  |z 9783658369323  |7 nnam 
773 1 8 |g year:2022  |g pages:26-31  |g extent:6  |a Unsupervised anomaly detection in the wild 
856 4 0 |u https://doi.org/10.1007/978-3-658-36932-3_6  |x Resolving-System  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20250930 
993 |a Article 
994 |a 2022 
998 |g 1100551875  |a Maier-Hein, Klaus H.  |m 1100551875:Maier-Hein, Klaus H.  |d 910000  |d 911400  |e 910000PM1100551875  |e 911400PM1100551875  |k 0/910000/  |k 1/910000/911400/  |p 6  |y j 
998 |g 1262948428  |a Lüth, Carsten  |m 1262948428:Lüth, Carsten  |d 110000  |e 110000PL1262948428  |k 0/110000/  |p 3 
998 |g 1080278214  |a Paech, Daniel  |m 1080278214:Paech, Daniel  |d 50000  |e 50000PP1080278214  |k 0/50000/  |p 2 
998 |g 1276158033  |a Zimmerer, David  |m 1276158033:Zimmerer, David  |d 110000  |e 110000PZ1276158033  |k 0/110000/  |p 1  |x j 
999 |a KXP-PPN1937406717  |e 4777932761 
BIB |a Y 
JSO |a {"id":{"eki":["1937406717"],"doi":["10.1007/978-3-658-36932-3_6"]},"name":{"displayForm":["David Zimmerer, Daniel Paech, Carsten Lüth, Jens Petersen, Gregor Köhler, Klaus Maier-Hein"]},"note":["Gesehen am 30.09.2025"],"language":["ger"],"type":{"bibl":"chapter","media":"Online-Ressource"},"title":[{"title":"Unsupervised anomaly detection in the wild","title_sort":"Unsupervised anomaly detection in the wild"}],"relHost":[{"person":[{"family":"Maier-Hein","given":"Klaus H.","role":"edt","display":"Maier-Hein, Klaus H."},{"display":"Deserno, Thomas M.","family":"Deserno","given":"Thomas M.","role":"edt"},{"display":"Handels, Heinz","role":"edt","given":"Heinz","family":"Handels"},{"display":"Maier, Andreas","family":"Maier","given":"Andreas","role":"edt"},{"display":"Palm, Christoph","family":"Palm","role":"edt","given":"Christoph"},{"display":"Tolxdorff, Thomas","family":"Tolxdorff","role":"edt","given":"Thomas"}],"origin":[{"dateIssuedDisp":"[2022]","publisherPlace":"Wiesbaden","dateIssuedKey":"2022","publisher":"Springer Gabler"}],"language":["ger"],"type":{"media":"Online-Ressource","bibl":"book"},"title":[{"subtitle":"proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022","title_sort":"Bildverarbeitung für die Medizin 2022","title":"Bildverarbeitung für die Medizin 2022"}],"physDesc":[{"extent":"1 Online-Ressource (xx, 356 Seiten, 142 Abb.)"}],"recId":"1799312186","disp":"German Workshop on Medical Image Computing (2022 : Heidelberg)Bildverarbeitung für die Medizin 2022","corporate":[{"display":"German Workshop on Medical Image Computing (2022, Heidelberg)","role":"aut"}],"name":{"displayForm":["Klaus Maier-Hein, Thomas M. Deserno, Heinz Handels, Andreas Maier, Christoph Palm, Thomas Tolxdorff (Hrsg.)"]},"part":{"pages":"26-31","year":"2022","text":"(2022), Seite 26-31","extent":"6"},"id":{"eki":["1799312186"],"isbn":["9783658369323"],"doi":["10.1007/978-3-658-36932-3"]}}],"person":[{"given":"David","role":"aut","family":"Zimmerer","display":"Zimmerer, David"},{"display":"Paech, Daniel","family":"Paech","role":"aut","given":"Daniel"},{"display":"Lüth, Carsten","family":"Lüth","role":"aut","given":"Carsten"},{"family":"Petersen","given":"Jens","role":"aut","display":"Petersen, Jens"},{"family":"Köhler","role":"aut","given":"Gregor","display":"Köhler, Gregor"},{"given":"Klaus H.","role":"aut","family":"Maier-Hein","display":"Maier-Hein, Klaus H."}],"origin":[{"dateIssuedDisp":"05 April 2022","dateIssuedKey":"2022"}],"physDesc":[{"extent":"6 S."}],"recId":"1937406717"} 
SRT |a ZIMMERERDAUNSUPERVIS0520