Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018

Accurate malaria predictions are essential for implementing timely interventions, particularly in Mozambique, where climate factors strongly influence transmission. This study aims to develop and evaluate a spatial-temporal prediction model for malaria incidence in Mozambique for potential use in a...

Full description

Saved in:
Bibliographic Details
Main Authors: Armando, Chaibo Jose (Author) , Rocklöv, Joacim (Author) , Sidat, Mohsin (Author) , Tozan, Yesim (Author) , Mavume, Alberto Francisco (Author) , Sewe, Maquins Odhiambo (Author)
Format: Article (Journal)
Language:English
Published: 08 April 2025
In: Scientific reports
Year: 2025, Volume: 15, Pages: 1-12
ISSN:2045-2322
DOI:10.1038/s41598-025-97072-6
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41598-025-97072-6
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41598-025-97072-6
Get full text
Author Notes:Chaibo Jose Armando, Joacim Rocklöv, Mohsin Sidat, Yesim Tozan, Alberto Francisco Mavume & Maquins Odhiambo Sewe

MARC

LEADER 00000caa a2200000 c 4500
001 1938088719
003 DE-627
005 20251120193510.0
007 cr uuu---uuuuu
008 251009s2025 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41598-025-97072-6  |2 doi 
035 |a (DE-627)1938088719 
035 |a (DE-599)KXP1938088719 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Armando, Chaibo Jose  |e VerfasserIn  |0 (DE-588)1297248635  |0 (DE-627)1853607533  |4 aut 
245 1 0 |a Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018  |c Chaibo Jose Armando, Joacim Rocklöv, Mohsin Sidat, Yesim Tozan, Alberto Francisco Mavume & Maquins Odhiambo Sewe 
264 1 |c 08 April 2025 
300 |b Illustrationen 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.10.2025 
520 |a Accurate malaria predictions are essential for implementing timely interventions, particularly in Mozambique, where climate factors strongly influence transmission. This study aims to develop and evaluate a spatial-temporal prediction model for malaria incidence in Mozambique for potential use in a malaria early warning system (MEWS). We used monthly data on malaria cases from 2001 to 2018 in Mozambique, the model incorporated lagged climate variables selected through Deviance Information Criterion (DIC), including mean temperature and precipitation (1-2 months), relative humidity (5-6 months), and Normalized Different Vegetation Index (NDVI) (3-4 months). Predictive distributions from monthly cross-validations were employed to calculate threshold exceedance probabilities, with district-specific thresholds set at the 75th percentile of historical monthly malaria incidence. The model’s ability to predict high and low malaria seasons was evaluated using receiver operating characteristic (ROC) analysis. Results indicated that malaria incidence in Mozambique peaks from November to April, offering a predictive lead time of up to 4 months. The model demonstrated high predictive power with an area under the curve (AUC) of 0.897 (0.893-0.901), sensitivity of 0.835 (0.827-0.843), and specificity of 0.793 (0.787-0.798), underscoring its suitability for integration into a MEWS. Thus, incorporating climate information within a multisectoral approach is essential for enhancing malaria prevention interventions effectiveness. 
650 4 |a Climate sciences 
650 4 |a Environmental sciences 
700 1 |a Rocklöv, Joacim  |e VerfasserIn  |0 (DE-588)1162960965  |0 (DE-627)1027050808  |0 (DE-576)507703707  |4 aut 
700 1 |a Sidat, Mohsin  |e VerfasserIn  |4 aut 
700 1 |a Tozan, Yesim  |e VerfasserIn  |4 aut 
700 1 |a Mavume, Alberto Francisco  |e VerfasserIn  |4 aut 
700 1 |a Sewe, Maquins Odhiambo  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Scientific reports  |d [London] : Springer Nature, 2011  |g 15(2025), Artikel-ID 11971, Seite 1-12  |h Online-Ressource  |w (DE-627)663366712  |w (DE-600)2615211-3  |w (DE-576)346641179  |x 2045-2322  |7 nnas  |a Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018 
773 1 8 |g volume:15  |g year:2025  |g elocationid:11971  |g pages:1-12  |g extent:12  |a Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018 
856 4 0 |u https://doi.org/10.1038/s41598-025-97072-6  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41598-025-97072-6  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251009 
993 |a Article 
994 |a 2025 
998 |g 1162960965  |a Rocklöv, Joacim  |m 1162960965:Rocklöv, Joacim  |d 910000  |d 912800  |e 910000PR1162960965  |e 912800PR1162960965  |k 0/910000/  |k 1/910000/912800/  |p 2 
999 |a KXP-PPN1938088719  |e 4783512051 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1938088719","physDesc":[{"noteIll":"Illustrationen","extent":"12 S."}],"relHost":[{"language":["eng"],"pubHistory":["1, article number 1 (2011)-"],"title":[{"title_sort":"Scientific reports","title":"Scientific reports"}],"disp":"Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018Scientific reports","part":{"pages":"1-12","volume":"15","extent":"12","text":"15(2025), Artikel-ID 11971, Seite 1-12","year":"2025"},"id":{"issn":["2045-2322"],"eki":["663366712"],"zdb":["2615211-3"]},"origin":[{"publisherPlace":"[London] ; London","dateIssuedKey":"2011","publisher":"Springer Nature ; Nature Publishing Group","dateIssuedDisp":"2011-"}],"note":["Gesehen am 12.07.24"],"recId":"663366712","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"language":["eng"],"note":["Gesehen am 09.10.2025"],"person":[{"family":"Armando","role":"aut","display":"Armando, Chaibo Jose","given":"Chaibo Jose"},{"given":"Joacim","role":"aut","display":"Rocklöv, Joacim","family":"Rocklöv"},{"role":"aut","display":"Sidat, Mohsin","family":"Sidat","given":"Mohsin"},{"given":"Yesim","display":"Tozan, Yesim","role":"aut","family":"Tozan"},{"given":"Alberto Francisco","role":"aut","display":"Mavume, Alberto Francisco","family":"Mavume"},{"given":"Maquins Odhiambo","display":"Sewe, Maquins Odhiambo","role":"aut","family":"Sewe"}],"id":{"eki":["1938088719"],"doi":["10.1038/s41598-025-97072-6"]},"origin":[{"dateIssuedDisp":"08 April 2025","dateIssuedKey":"2025"}],"title":[{"title":"Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018","title_sort":"Spatio-temporal modelling and prediction of malaria incidence in Mozambique using climatic indicators from 2001 to 2018"}],"name":{"displayForm":["Chaibo Jose Armando, Joacim Rocklöv, Mohsin Sidat, Yesim Tozan, Alberto Francisco Mavume & Maquins Odhiambo Sewe"]},"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a ARMANDOCHASPATIOTEMP0820