Solvation free energies from neural thermodynamic integration

We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Máté, Bálint (VerfasserIn) , Fleuret, François (VerfasserIn) , Bereau, Tristan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2025
In: The journal of chemical physics
Year: 2025, Jahrgang: 162, Heft: 12, Pages: 124107-1 - 124107-9
ISSN:1089-7690
DOI:10.1063/5.0251736
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1063/5.0251736
Volltext
Verfasserangaben:Bálint Máté, François Fleuret, Tristan Bereau
Beschreibung
Zusammenfassung:We present a method for computing free-energy differences using thermodynamic integration with a neural network potential that interpolates between two target Hamiltonians. The interpolation is defined at the sample distribution level, and the neural network potential is optimized to match the corresponding equilibrium potential at every intermediate time step. Once the interpolating potentials and samples are well-aligned, the free-energy difference can be estimated using (neural) thermodynamic integration. To target molecular systems, we simultaneously couple Lennard-Jones and electrostatic interactions and model the rigid-body rotation of molecules. We report accurate results for several benchmark systems: a Lennard-Jones particle in a Lennard-Jones fluid, as well as the insertion of both water and methane solutes in a water solvent at atomistic resolution using a simple three-body neural-network potential.
Beschreibung:Online veröffentlicht: 25. März 2025
Gesehen am 15.10.2025
Beschreibung:Online Resource
ISSN:1089-7690
DOI:10.1063/5.0251736