Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair
We introduce a novel, well-defined four-dimensional regularized Gauss-Bonnet theory of gravity by applying a dimensional regularization procedure. The resulting theory is a vector-tensor theory within the generalized Proca class. We then consider the static spherically symmetric solutions of this th...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
6 June 2025
|
| In: |
Physical review
Year: 2025, Volume: 111, Issue: 12, Pages: 1-11 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/9f2w-3kly |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/9f2w-3kly Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/9f2w-3kly |
| Author Notes: | Christos Charmousis, Pedro G.S. Fernandes, and Mokhtar Hassaine |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1938891783 | ||
| 003 | DE-627 | ||
| 005 | 20251020131102.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 251020s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/9f2w-3kly |2 doi | |
| 035 | |a (DE-627)1938891783 | ||
| 035 | |a (DE-599)KXP1938891783 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Charmousis, Christos |e VerfasserIn |0 (DE-588)1379382270 |0 (DE-627)1938892208 |4 aut | |
| 245 | 1 | 0 | |a Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair |c Christos Charmousis, Pedro G.S. Fernandes, and Mokhtar Hassaine |
| 264 | 1 | |c 6 June 2025 | |
| 300 | |b Illustrationen | ||
| 300 | |a 11 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Veröffentlicht: 6. Juni 2025 | ||
| 500 | |a Gesehen am 20.10.2025 | ||
| 520 | |a We introduce a novel, well-defined four-dimensional regularized Gauss-Bonnet theory of gravity by applying a dimensional regularization procedure. The resulting theory is a vector-tensor theory within the generalized Proca class. We then consider the static spherically symmetric solutions of this theory and find black hole solutions that acquire primary hair. Notably, one of the integration constants associated with the Proca field is not manifest in the original metric, but under a disformal transformation of the seed solution, it emerges as a second, independent primary hair. This additional hair acts as an effective cosmological constant in the disformed geometry, even in the absence of a bare cosmological constant term. We further generalize these black hole solutions to include electromagnetic charges and effects related to the scalar-tensor counterparts of the regularized Gauss-Bonnet theory. We discuss the implications of our findings to observations. | ||
| 700 | 1 | |a Fernandes, Pedro Goncalo da Silva |e VerfasserIn |0 (DE-588)1378283767 |0 (DE-627)1937777103 |4 aut | |
| 700 | 1 | |a Hassaine, Mokhtar |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Ridge, NY : American Physical Society, 2016 |g 111(2025), 12, Artikel-ID 124008, Seite 1-11 |h Online-Ressource |w (DE-627)846313510 |w (DE-600)2844732-3 |w (DE-576)454495811 |x 2470-0029 |7 nnas |a Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair |
| 773 | 1 | 8 | |g volume:111 |g year:2025 |g number:12 |g elocationid:124008 |g pages:1-11 |g extent:11 |a Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair |
| 856 | 4 | 0 | |u https://doi.org/10.1103/9f2w-3kly |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/9f2w-3kly |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20251020 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1378283767 |a Fernandes, Pedro Goncalo da Silva |m 1378283767:Fernandes, Pedro Goncalo da Silva |d 700000 |d 728500 |e 700000PF1378283767 |e 728500PF1378283767 |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 999 | |a KXP-PPN1938891783 |e 4789835685 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"recId":"1938891783","name":{"displayForm":["Christos Charmousis, Pedro G.S. Fernandes, and Mokhtar Hassaine"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"6 June 2025"}],"id":{"doi":["10.1103/9f2w-3kly"],"eki":["1938891783"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"extent":"11 S.","noteIll":"Illustrationen"}],"language":["eng"],"title":[{"title_sort":"Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair","title":"Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hair"}],"person":[{"display":"Charmousis, Christos","family":"Charmousis","role":"aut","given":"Christos"},{"display":"Fernandes, Pedro Goncalo da Silva","family":"Fernandes","role":"aut","given":"Pedro Goncalo da Silva"},{"given":"Mokhtar","role":"aut","family":"Hassaine","display":"Hassaine, Mokhtar"}],"relHost":[{"part":{"year":"2025","issue":"12","volume":"111","pages":"1-11","extent":"11","text":"111(2025), 12, Artikel-ID 124008, Seite 1-11"},"note":["Gesehen am 14.03.2023"],"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"id":{"zdb":["2844732-3"],"issn":["2470-0029"],"eki":["846313510"]},"origin":[{"dateIssuedDisp":"2016-","publisher":"American Physical Society","dateIssuedKey":"2016","publisherPlace":"Ridge, NY"}],"name":{"displayForm":["published by American Physical Society"]},"recId":"846313510","disp":"Proca theory of four-dimensional regularized Gauss-Bonnet gravity and black holes with primary hairPhysical review","title":[{"title":"Physical review","title_sort":"Physical review"}],"corporate":[{"role":"isb","display":"American Physical Society"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"]}],"note":["Veröffentlicht: 6. Juni 2025","Gesehen am 20.10.2025"]} | ||
| SRT | |a CHARMOUSISPROCATHEOR6202 | ||