A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues

In a recent companion paper, we proposed two methods, GD+k and JDQMR, as nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we seek nearly optimal methods for a large number, $nev$, of eigenpairs that work with a search space whose size is $O(1)$, independent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Frieß, Nils (VerfasserIn) , Gilbert, Alexander (VerfasserIn) , Scheichl, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 6, 2025
In: SIAM journal on matrix analysis and applications
Year: 2025, Jahrgang: 46, Heft: 1, Pages: 626-647
ISSN:1095-7162
DOI:10.1137/23M1622155
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/23M1622155
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/23M1622155
Volltext
Verfasserangaben:Nils Friess, Alexander D. Gilbert, Robert Scheichl

MARC

LEADER 00000naa a2200000 c 4500
001 1938997328
003 DE-627
005 20251021133918.0
007 cr uuu---uuuuu
008 251021s2025 xx |||||o 00| ||eng c
024 7 |a 10.1137/23M1622155  |2 doi 
035 |a (DE-627)1938997328 
035 |a (DE-599)KXP1938997328 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Frieß, Nils  |e VerfasserIn  |0 (DE-588)1379470684  |0 (DE-627)1938998448  |4 aut 
245 1 2 |a A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues  |c Nils Friess, Alexander D. Gilbert, Robert Scheichl 
264 1 |c March 6, 2025 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.10.2025 
520 |a In a recent companion paper, we proposed two methods, GD+k and JDQMR, as nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we seek nearly optimal methods for a large number, $nev$, of eigenpairs that work with a search space whose size is $O(1)$, independent from $nev$. The motivation is twofold: avoid the additional $O(nev N)$ storage and the $O(nev^2N)$ iteration costs. First, we provide an analysis of the oblique projectors required in the Jacobi–Davidson method and identify ways to avoid them during the inner iterations, either completely or partially. Second, we develop a comprehensive set of performance models for GD+k, Jacobi–Davidson type methods, and ARPACK. Based both on theoretical arguments and on our models we argue that any eigenmethod with $O(1)$ basis size, preconditioned or not, will be superseded asymptotically by Lanczos-type methods that use $O(nev)$ vectors in the basis. However, this may not happen until $nev > O(1000)$. Third, we perform an extensive set of experiments with our methods and against other state-of-the-art software that validates our models and confirms our GD+k and JDQMR methods as nearly optimal within the class of O(1) basis size methods. 
700 1 |a Gilbert, Alexander  |e VerfasserIn  |0 (DE-588)1180547047  |0 (DE-627)1067775641  |0 (DE-576)520275241  |4 aut 
700 1 |a Scheichl, Robert  |d 1972-  |e VerfasserIn  |0 (DE-588)1173753842  |0 (DE-627)1043602305  |0 (DE-576)515668532  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on matrix analysis and applications  |d Philadelphia, Pa. : Soc., 1988  |g 46(2025), 1 vom: März, Seite 626-647  |h Online-Ressource  |w (DE-627)26688542X  |w (DE-600)1468407-X  |w (DE-576)078589991  |x 1095-7162  |7 nnas 
773 1 8 |g volume:46  |g year:2025  |g number:1  |g month:03  |g pages:626-647  |g extent:22  |a A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues 
856 4 0 |u https://doi.org/10.1137/23M1622155  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/23M1622155  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20251021 
993 |a Article 
994 |a 2025 
998 |g 1173753842  |a Scheichl, Robert  |m 1173753842:Scheichl, Robert  |d 110000  |d 110400  |e 110000PS1173753842  |e 110400PS1173753842  |k 0/110000/  |k 1/110000/110400/  |p 3  |y j 
998 |g 1379470684  |a Frieß, Nils  |m 1379470684:Frieß, Nils  |d 700000  |d 708000  |e 700000PF1379470684  |e 708000PF1379470684  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1938997328  |e 4790179451 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1137/23M1622155"],"eki":["1938997328"]},"language":["eng"],"name":{"displayForm":["Nils Friess, Alexander D. Gilbert, Robert Scheichl"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1938997328","physDesc":[{"extent":"22 S."}],"person":[{"display":"Frieß, Nils","role":"aut","given":"Nils","family":"Frieß"},{"family":"Gilbert","given":"Alexander","display":"Gilbert, Alexander","role":"aut"},{"given":"Robert","family":"Scheichl","display":"Scheichl, Robert","role":"aut"}],"title":[{"title_sort":"complex-projected Rayleigh quotient iteration for targeting interior eigenvalues","title":"A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues"}],"relHost":[{"name":{"displayForm":["Society for Industrial and Applied Mathematics, SIAM"]},"recId":"26688542X","id":{"eki":["26688542X"],"issn":["1095-7162"],"zdb":["1468407-X"]},"pubHistory":["Vol. 9, issue 1 (1988)-"],"origin":[{"dateIssuedKey":"1988","publisherPlace":"Philadelphia, Pa.","publisher":"Soc.","dateIssuedDisp":"1988-"}],"note":["Gesehen am 08.07.2020"],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on matrix analysis and applications","language":["eng"],"titleAlt":[{"title":"Journal on matrix analysis and applications"}],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics"}],"part":{"extent":"22","year":"2025","volume":"46","issue":"1","pages":"626-647","text":"46(2025), 1 vom: März, Seite 626-647"},"title":[{"title_sort":"SIAM journal on matrix analysis and applications","title":"SIAM journal on matrix analysis and applications"}]}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"March 6, 2025"}],"note":["Gesehen am 21.10.2025"]} 
SRT |a FRIESSNILSCOMPLEXPRO6202