A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues
In a recent companion paper, we proposed two methods, GD+k and JDQMR, as nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we seek nearly optimal methods for a large number, $nev$, of eigenpairs that work with a search space whose size is $O(1)$, independent...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
March 6, 2025
|
| In: |
SIAM journal on matrix analysis and applications
Year: 2025, Jahrgang: 46, Heft: 1, Pages: 626-647 |
| ISSN: | 1095-7162 |
| DOI: | 10.1137/23M1622155 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/23M1622155 Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/23M1622155 |
| Verfasserangaben: | Nils Friess, Alexander D. Gilbert, Robert Scheichl |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1938997328 | ||
| 003 | DE-627 | ||
| 005 | 20251021133918.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 251021s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/23M1622155 |2 doi | |
| 035 | |a (DE-627)1938997328 | ||
| 035 | |a (DE-599)KXP1938997328 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Frieß, Nils |e VerfasserIn |0 (DE-588)1379470684 |0 (DE-627)1938998448 |4 aut | |
| 245 | 1 | 2 | |a A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues |c Nils Friess, Alexander D. Gilbert, Robert Scheichl |
| 264 | 1 | |c March 6, 2025 | |
| 300 | |a 22 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 21.10.2025 | ||
| 520 | |a In a recent companion paper, we proposed two methods, GD+k and JDQMR, as nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we seek nearly optimal methods for a large number, $nev$, of eigenpairs that work with a search space whose size is $O(1)$, independent from $nev$. The motivation is twofold: avoid the additional $O(nev N)$ storage and the $O(nev^2N)$ iteration costs. First, we provide an analysis of the oblique projectors required in the Jacobi–Davidson method and identify ways to avoid them during the inner iterations, either completely or partially. Second, we develop a comprehensive set of performance models for GD+k, Jacobi–Davidson type methods, and ARPACK. Based both on theoretical arguments and on our models we argue that any eigenmethod with $O(1)$ basis size, preconditioned or not, will be superseded asymptotically by Lanczos-type methods that use $O(nev)$ vectors in the basis. However, this may not happen until $nev > O(1000)$. Third, we perform an extensive set of experiments with our methods and against other state-of-the-art software that validates our models and confirms our GD+k and JDQMR methods as nearly optimal within the class of O(1) basis size methods. | ||
| 700 | 1 | |a Gilbert, Alexander |e VerfasserIn |0 (DE-588)1180547047 |0 (DE-627)1067775641 |0 (DE-576)520275241 |4 aut | |
| 700 | 1 | |a Scheichl, Robert |d 1972- |e VerfasserIn |0 (DE-588)1173753842 |0 (DE-627)1043602305 |0 (DE-576)515668532 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on matrix analysis and applications |d Philadelphia, Pa. : Soc., 1988 |g 46(2025), 1 vom: März, Seite 626-647 |h Online-Ressource |w (DE-627)26688542X |w (DE-600)1468407-X |w (DE-576)078589991 |x 1095-7162 |7 nnas |
| 773 | 1 | 8 | |g volume:46 |g year:2025 |g number:1 |g month:03 |g pages:626-647 |g extent:22 |a A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues |
| 856 | 4 | 0 | |u https://doi.org/10.1137/23M1622155 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://epubs.siam.org/doi/10.1137/23M1622155 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20251021 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1173753842 |a Scheichl, Robert |m 1173753842:Scheichl, Robert |d 110000 |d 110400 |e 110000PS1173753842 |e 110400PS1173753842 |k 0/110000/ |k 1/110000/110400/ |p 3 |y j | ||
| 998 | |g 1379470684 |a Frieß, Nils |m 1379470684:Frieß, Nils |d 700000 |d 708000 |e 700000PF1379470684 |e 708000PF1379470684 |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1938997328 |e 4790179451 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"id":{"doi":["10.1137/23M1622155"],"eki":["1938997328"]},"language":["eng"],"name":{"displayForm":["Nils Friess, Alexander D. Gilbert, Robert Scheichl"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1938997328","physDesc":[{"extent":"22 S."}],"person":[{"display":"Frieß, Nils","role":"aut","given":"Nils","family":"Frieß"},{"family":"Gilbert","given":"Alexander","display":"Gilbert, Alexander","role":"aut"},{"given":"Robert","family":"Scheichl","display":"Scheichl, Robert","role":"aut"}],"title":[{"title_sort":"complex-projected Rayleigh quotient iteration for targeting interior eigenvalues","title":"A complex-projected Rayleigh quotient iteration for targeting interior eigenvalues"}],"relHost":[{"name":{"displayForm":["Society for Industrial and Applied Mathematics, SIAM"]},"recId":"26688542X","id":{"eki":["26688542X"],"issn":["1095-7162"],"zdb":["1468407-X"]},"pubHistory":["Vol. 9, issue 1 (1988)-"],"origin":[{"dateIssuedKey":"1988","publisherPlace":"Philadelphia, Pa.","publisher":"Soc.","dateIssuedDisp":"1988-"}],"note":["Gesehen am 08.07.2020"],"physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on matrix analysis and applications","language":["eng"],"titleAlt":[{"title":"Journal on matrix analysis and applications"}],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics"}],"part":{"extent":"22","year":"2025","volume":"46","issue":"1","pages":"626-647","text":"46(2025), 1 vom: März, Seite 626-647"},"title":[{"title_sort":"SIAM journal on matrix analysis and applications","title":"SIAM journal on matrix analysis and applications"}]}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"March 6, 2025"}],"note":["Gesehen am 21.10.2025"]} | ||
| SRT | |a FRIESSNILSCOMPLEXPRO6202 | ||