The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres

The subject of this article are magnetic geodesics on odd-dimensional spheres endowed with the round metric and with the magnetic potential given by the standard contact form. We compute the Mañé critical value of the system and show that a value of the energy is supercritical if and only if all p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Albers, Peter (VerfasserIn) , Benedetti, Gabriele (VerfasserIn) , Maier, Levin (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2 May 2025
In: Journal of geometry and physics
Year: 2025, Jahrgang: 214, Pages: 1-21
DOI:10.1016/j.geomphys.2025.105521
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.geomphys.2025.105521
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0393044025001056
Volltext
Verfasserangaben:P. Albers, G. Benedetti, L. Maier

MARC

LEADER 00000naa a2200000 c 4500
001 1939019915
003 DE-627
005 20251021153242.0
007 cr uuu---uuuuu
008 251021s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.geomphys.2025.105521  |2 doi 
035 |a (DE-627)1939019915 
035 |a (DE-599)KXP1939019915 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Albers, Peter  |d 1975-  |e VerfasserIn  |0 (DE-588)129903817  |0 (DE-627)483350362  |0 (DE-576)188953140  |4 aut 
245 1 4 |a The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres  |c P. Albers, G. Benedetti, L. Maier 
264 1 |c 2 May 2025 
300 |b Illustrationen 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 21.10.2025 
520 |a The subject of this article are magnetic geodesics on odd-dimensional spheres endowed with the round metric and with the magnetic potential given by the standard contact form. We compute the Mañé critical value of the system and show that a value of the energy is supercritical if and only if all pairs of points on the sphere can be connected by a magnetic geodesic with that value of the energy. Our methods are explicit and rely on the description of the submanifolds invariant by the flow and of the symmetries of the system, which we define for a general magnetic system and call totally magnetic submanifolds and magnetomorphisms, respectively. We recover hereby the known fact that the system is super-integrable: the three-spheres obtained intersecting the ambient space with a complex plane are totally magnetic and each magnetic geodesic is tangent to a two-dimensional Clifford torus. In our study the integral of motion given by the angle between magnetic geodesics and the Reeb vector field plays a special role, and can be used to realize the magnetic flow as an interpolation between the sub-Riemannian geodesic flow of the contact distribution and the Reeb flow of the contact form. 
650 4 |a Hopf-Rinow 
650 4 |a Magnetic geodesics 
650 4 |a Mañé critical value 
700 1 |a Benedetti, Gabriele  |e VerfasserIn  |0 (DE-588)1219682098  |0 (DE-627)1735655376  |4 aut 
700 1 |a Maier, Levin  |e VerfasserIn  |0 (DE-588)1379480000  |0 (DE-627)1939020573  |4 aut 
773 0 8 |i Enthalten in  |t Journal of geometry and physics  |d Amsterdam [u.a.] : North-Holland, 1984  |g 214(2025), Artikel-ID 105521, Seite 1-21  |h Online-Ressource  |w (DE-627)26601450X  |w (DE-600)1466516-5  |w (DE-576)074959697  |7 nnas  |a The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres 
773 1 8 |g volume:214  |g year:2025  |g elocationid:105521  |g pages:1-21  |g extent:21  |a The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres 
856 4 0 |u https://doi.org/10.1016/j.geomphys.2025.105521  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0393044025001056  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251021 
993 |a Article 
994 |a 2025 
998 |g 1379480000  |a Maier, Levin  |m 1379480000:Maier, Levin  |d 110000  |d 110400  |e 110000PM1379480000  |e 110400PM1379480000  |k 0/110000/  |k 1/110000/110400/ 
998 |g 129903817  |a Albers, Peter  |m 129903817:Albers, Peter  |d 110000  |d 110400  |e 110000PA129903817  |e 110400PA129903817  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1939019915  |e 4790250989 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"part":{"text":"214(2025), Artikel-ID 105521, Seite 1-21","volume":"214","extent":"21","year":"2025","pages":"1-21"},"titleAlt":[{"title":"Geometry and physics"},{"title":"JGP"}],"pubHistory":["1.1984 - 62.2012; Vol. 63.2013 -"],"language":["eng"],"recId":"26601450X","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheresJournal of geometry and physics","title":[{"title_sort":"Journal of geometry and physics","title":"Journal of geometry and physics","subtitle":"JGP"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["1466516-5"],"eki":["26601450X"]},"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedDisp":"1984-","publisher":"North-Holland","dateIssuedKey":"1984"}]}],"physDesc":[{"noteIll":"Illustrationen","extent":"21 S."}],"name":{"displayForm":["P. Albers, G. Benedetti, L. Maier"]},"id":{"doi":["10.1016/j.geomphys.2025.105521"],"eki":["1939019915"]},"origin":[{"dateIssuedDisp":"2 May 2025","dateIssuedKey":"2025"}],"language":["eng"],"recId":"1939019915","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 21.10.2025"],"person":[{"display":"Albers, Peter","roleDisplay":"VerfasserIn","role":"aut","family":"Albers","given":"Peter"},{"family":"Benedetti","given":"Gabriele","roleDisplay":"VerfasserIn","display":"Benedetti, Gabriele","role":"aut"},{"family":"Maier","given":"Levin","roleDisplay":"VerfasserIn","display":"Maier, Levin","role":"aut"}],"title":[{"title":"The Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres","title_sort":"Hopf-Rinow theorem and the Mañé critical value for magnetic geodesics on odd-dimensional spheres"}]} 
SRT |a ALBERSPETEHOPFRINOWT2202