RIDDEN: data-driven inference of receptor activity from transcriptomic data

Intracellular signaling initiated from ligand-bound receptors plays a fundamental role in both physiological regulation and development of disease states, making receptors one of the most frequent drug targets. Systems level analysis of receptor activity can help to identify cell and disease type-sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barsi, Szilvia (VerfasserIn) , Varga, Eszter (VerfasserIn) , Dimitrov, Daniel (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn) , Hunyady, László (VerfasserIn) , Szalai, Bence (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 16, 2025
In: PLoS Computational Biology
Year: 2025, Jahrgang: 21, Heft: 6, Pages: 1-20
ISSN:1553-7358
DOI:10.1371/journal.pcbi.1013188
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1371/journal.pcbi.1013188
Verlag, kostenfrei, Volltext: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1013188
Volltext
Verfasserangaben:Szilvia Barsi, Eszter Varga, Daniel Dimitrov, Julio Saez-Rodriguez, László Hunyady, Bence Szalai

MARC

LEADER 00000naa a2200000 c 4500
001 1939391105
003 DE-627
005 20251024104958.0
007 cr uuu---uuuuu
008 251024s2025 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pcbi.1013188  |2 doi 
035 |a (DE-627)1939391105 
035 |a (DE-599)KXP1939391105 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Barsi, Szilvia  |e VerfasserIn  |0 (DE-588)1308883587  |0 (DE-627)1869493869  |4 aut 
245 1 0 |a RIDDEN  |b data-driven inference of receptor activity from transcriptomic data  |c Szilvia Barsi, Eszter Varga, Daniel Dimitrov, Julio Saez-Rodriguez, László Hunyady, Bence Szalai 
264 1 |c June 16, 2025 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 16. Juni 2025 
500 |a Gesehen am 24.10.2025 
520 |a Intracellular signaling initiated from ligand-bound receptors plays a fundamental role in both physiological regulation and development of disease states, making receptors one of the most frequent drug targets. Systems level analysis of receptor activity can help to identify cell and disease type-specific receptor activity alterations. While several computational methods have been developed to analyze ligand-receptor interactions based on transcriptomics data, none of them focuses directly on the receptor side of these interactions. Also, most of the methods use directly the expression of ligands and receptors to infer active interaction, while co-expression of genes does not necessarily indicate functional interactions or activated state. To address these problems, we developed RIDDEN (Receptor actIvity Data Driven inferENce), a computational tool, which predicts receptor activities from the receptor-regulated gene expression profiles, and not from the expressions of ligand and receptor genes. We collected 14463 perturbation gene expression profiles for 229 different receptors. Using these data, we trained the RIDDEN model, which can effectively predict receptor activity for new bulk and single-cell transcriptomics datasets. We validated RIDDEN’s performance on independent in vitro and in vivo receptor perturbation data, showing that RIDDEN’s model weights correspond to known regulatory interactions between receptors and transcription factors, and that predicted receptor activities correlate with receptor and ligand expressions in in vivo datasets. We also show that RIDDEN can be used to identify mechanistic biomarkers in an immune checkpoint blockade-treated cancer patient cohort. RIDDEN, the largest transcriptomics-based receptor activity inference model, can be used to identify cell populations with altered receptor activity and, in turn, foster the study of cell-cell communication using transcriptomics data. 
650 4 |a Cancer treatment 
650 4 |a Cytokine receptors 
650 4 |a Cytokines 
650 4 |a Drug interactions 
650 4 |a Gene expression 
650 4 |a Immune receptors 
650 4 |a Transcription factors 
650 4 |a Transcriptome analysis 
700 1 |a Varga, Eszter  |e VerfasserIn  |4 aut 
700 1 |a Dimitrov, Daniel  |d 1994-  |e VerfasserIn  |0 (DE-588)1266327061  |0 (DE-627)1815171596  |4 aut 
700 1 |a Sáez Rodríguez, Julio  |d 1978-  |e VerfasserIn  |0 (DE-588)133764362  |0 (DE-627)555766632  |0 (DE-576)300083114  |4 aut 
700 1 |a Hunyady, László  |e VerfasserIn  |4 aut 
700 1 |a Szalai, Bence  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Public Library of Science  |t PLoS Computational Biology  |d San Francisco, Calif. : Public Library of Science, 2005  |g 21(2025), 6, Artikel-ID e1013188, Seite 1-20  |h Online-Ressource  |w (DE-627)491436017  |w (DE-600)2193340-6  |w (DE-576)273890492  |x 1553-7358  |7 nnas 
773 1 8 |g volume:21  |g year:2025  |g number:6  |g elocationid:e1013188  |g pages:1-20  |g extent:20  |a RIDDEN data-driven inference of receptor activity from transcriptomic data 
856 4 0 |u https://doi.org/10.1371/journal.pcbi.1013188  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1013188  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251024 
993 |a Article 
994 |a 2025 
998 |g 133764362  |a Sáez Rodríguez, Julio  |m 133764362:Sáez Rodríguez, Julio  |d 910000  |d 912900  |e 910000PS133764362  |e 912900PS133764362  |k 0/910000/  |k 1/910000/912900/  |p 4 
998 |g 1266327061  |a Dimitrov, Daniel  |m 1266327061:Dimitrov, Daniel  |p 3 
999 |a KXP-PPN1939391105  |e 4791236084 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"person":[{"given":"Szilvia","role":"aut","family":"Barsi","display":"Barsi, Szilvia"},{"family":"Varga","display":"Varga, Eszter","given":"Eszter","role":"aut"},{"family":"Dimitrov","display":"Dimitrov, Daniel","role":"aut","given":"Daniel"},{"family":"Sáez Rodríguez","display":"Sáez Rodríguez, Julio","given":"Julio","role":"aut"},{"family":"Hunyady","display":"Hunyady, László","given":"László","role":"aut"},{"display":"Szalai, Bence","family":"Szalai","role":"aut","given":"Bence"}],"relHost":[{"part":{"issue":"6","text":"21(2025), 6, Artikel-ID e1013188, Seite 1-20","year":"2025","pages":"1-20","volume":"21","extent":"20"},"language":["eng"],"corporate":[{"role":"aut","display":"Public Library of Science"}],"id":{"issn":["1553-7358"],"zdb":["2193340-6"],"eki":["491436017"]},"name":{"displayForm":["publ. by the Public Library of Science (PLoS) in association with the International Society for Computational Biology (ISCB)"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"491436017","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Public Library of SciencePLoS Computational Biology","pubHistory":["1.2005 -"],"origin":[{"publisherPlace":"San Francisco, Calif.","dateIssuedKey":"2005","publisher":"Public Library of Science","dateIssuedDisp":"2005-"}],"note":["Gesehen am 23. November 2020"],"title":[{"subtitle":"a new community journal","title_sort":"PLoS Computational Biology","title":"PLoS Computational Biology"}]}],"recId":"1939391105","name":{"displayForm":["Szilvia Barsi, Eszter Varga, Daniel Dimitrov, Julio Saez-Rodriguez, László Hunyady, Bence Szalai"]},"physDesc":[{"extent":"20 S.","noteIll":"Illustrationen"}],"id":{"eki":["1939391105"],"doi":["10.1371/journal.pcbi.1013188"]},"note":["Veröffentlicht: 16. Juni 2025","Gesehen am 24.10.2025"],"origin":[{"dateIssuedDisp":"June 16, 2025","dateIssuedKey":"2025"}],"title":[{"subtitle":"data-driven inference of receptor activity from transcriptomic data","title_sort":"RIDDEN","title":"RIDDEN"}],"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a BARSISZILVRIDDEN1620