Explicit abnormality extraction for unsupervised motion artifact reduction in magnetic resonance imaging

Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhou, Yusheng (VerfasserIn) , Li, Hao (VerfasserIn) , Liu, Jianan (VerfasserIn) , Kong, Zhengmin (VerfasserIn) , Huang, Tao (VerfasserIn) , Ahn, Euijoon (VerfasserIn) , Lv, Zhihan (VerfasserIn) , Kim, Jinman (VerfasserIn) , Feng, David Dagan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 2025
In: IEEE journal of biomedical and health informatics
Year: 2025, Jahrgang: 29, Heft: 6, Pages: 3853-3863
ISSN:2168-2208
DOI:10.1109/JBHI.2024.3444771
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1109/JBHI.2024.3444771
Verlag, lizenzpflichtig, Volltext: https://ieeexplore.ieee.org/document/10638208/authors
Volltext
Verfasserangaben:Yusheng Zhou, Hao Li, Jianan Liu, Zhengmin Kong, Tao Huang, Euijoon Ahn, Zhihan Lv, Jinman Kim, David Dagan Feng

MARC

LEADER 00000naa a22000002c 4500
001 1939467071
003 DE-627
005 20251027095230.0
007 cr uuu---uuuuu
008 251027s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/JBHI.2024.3444771  |2 doi 
035 |a (DE-627)1939467071 
035 |a (DE-599)KXP1939467071 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Zhou, Yusheng  |d 1989-  |e VerfasserIn  |0 (DE-588)1250931584  |0 (DE-627)1788441648  |4 aut 
245 1 0 |a Explicit abnormality extraction for unsupervised motion artifact reduction in magnetic resonance imaging  |c Yusheng Zhou, Hao Li, Jianan Liu, Zhengmin Kong, Tao Huang, Euijoon Ahn, Zhihan Lv, Jinman Kim, David Dagan Feng 
264 1 |c June 2025 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 16. August 2024 
500 |a Gesehen am 27.10.2025 
520 |a Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage of these methods is their dependency on acquiring paired sets of motion artifact-corrupted (MA-corrupted) and motion artifact-free (MA-free) MR images for training purposes. Obtaining such image pairs is difficult and therefore limits the application of supervised training. In this paper, we propose a novel UNsupervised Abnormality Extraction Network (UNAEN) to alleviate this problem. Our network is capable of working with unpaired MA-corrupted and MA-free images. It converts the MA-corrupted images to MA-reduced images by extracting abnormalities from the MA-corrupted images using a proposed artifact extractor, which intercepts the residual artifact maps from the MA-corrupted MR images explicitly, and a reconstructor to restore the original input from the MA-reduced images. The performance of UNAEN was assessed by experimenting with various publicly available MRI datasets and comparing them with state-of-the-art methods. The quantitative evaluation demonstrates the superiority of UNAEN over alternative MAR methods and visually exhibits fewer residual artifacts. Our results substantiate the potential of UNAEN as a promising solution applicable in real-world clinical environments, with the capability to enhance diagnostic accuracy and facilitate image-guided therapies. 
650 4 |a domain adaptation 
650 4 |a explicit abnormality extraction 
650 4 |a Feature extraction 
650 4 |a Generators 
650 4 |a Image reconstruction 
650 4 |a Magnetic resonance imaging 
650 4 |a motion artifact reduction 
650 4 |a Motion artifacts 
650 4 |a Task analysis 
650 4 |a Training 
650 4 |a unsupervised learning 
700 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1368015905  |0 (DE-627)1927797535  |4 aut 
700 1 |a Liu, Jianan  |e VerfasserIn  |4 aut 
700 1 |a Kong, Zhengmin  |e VerfasserIn  |4 aut 
700 1 |a Huang, Tao  |e VerfasserIn  |4 aut 
700 1 |a Ahn, Euijoon  |e VerfasserIn  |4 aut 
700 1 |a Lv, Zhihan  |e VerfasserIn  |4 aut 
700 1 |a Kim, Jinman  |e VerfasserIn  |4 aut 
700 1 |a Feng, David Dagan  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE journal of biomedical and health informatics  |d New York, NY : IEEE, 2013  |g 29(2025), 6 vom: Juni, Seite 3853-3863  |h Online-Ressource  |w (DE-627)728472279  |w (DE-600)2687987-6  |w (DE-576)375637281  |x 2168-2208  |7 nnas 
773 1 8 |g volume:29  |g year:2025  |g number:6  |g month:06  |g pages:3853-3863  |g extent:11  |a Explicit abnormality extraction for unsupervised motion artifact reduction in magnetic resonance imaging 
856 4 0 |u https://doi.org/10.1109/JBHI.2024.3444771  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://ieeexplore.ieee.org/document/10638208/authors  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20251027 
993 |a Article 
994 |a 2025 
998 |g 1368015905  |a Li, Hao  |m 1368015905:Li, Hao  |d 910000  |d 911100  |e 910000PL1368015905  |e 911100PL1368015905  |k 0/910000/  |k 1/910000/911100/  |p 2 
999 |a KXP-PPN1939467071  |e 4791885597 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"11 S."}],"relHost":[{"recId":"728472279","corporate":[{"roleDisplay":"VerfasserIn","display":"Institute of Electrical and Electronics Engineers","role":"aut"}],"language":["eng"],"note":["Gesehen am 14.03.2023"],"disp":"Institute of Electrical and Electronics EngineersIEEE journal of biomedical and health informatics","type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"pages":"3853-3863","issue":"6","year":"2025","extent":"11","volume":"29","text":"29(2025), 6 vom: Juni, Seite 3853-3863"},"titleAlt":[{"title":"Biomedical and health informatics"}],"pubHistory":["17.2013 -"],"title":[{"title":"IEEE journal of biomedical and health informatics","title_sort":"IEEE journal of biomedical and health informatics"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"id":{"zdb":["2687987-6"],"doi":["10.1109/JBHI.6221020"],"eki":["728472279"],"issn":["2168-2208"]},"origin":[{"publisherPlace":"New York, NY","publisher":"IEEE","dateIssuedKey":"2013","dateIssuedDisp":"2013-"}]}],"name":{"displayForm":["Yusheng Zhou, Hao Li, Jianan Liu, Zhengmin Kong, Tao Huang, Euijoon Ahn, Zhihan Lv, Jinman Kim, David Dagan Feng"]},"origin":[{"dateIssuedDisp":"June 2025","dateIssuedKey":"2025"}],"id":{"doi":["10.1109/JBHI.2024.3444771"],"eki":["1939467071"]},"note":["Veröffentlicht: 16. August 2024","Gesehen am 27.10.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1939467071","language":["eng"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Zhou, Yusheng","given":"Yusheng","family":"Zhou"},{"family":"Li","given":"Hao","display":"Li, Hao","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Liu, Jianan","given":"Jianan","family":"Liu"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kong, Zhengmin","given":"Zhengmin","family":"Kong"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Huang, Tao","given":"Tao","family":"Huang"},{"given":"Euijoon","family":"Ahn","role":"aut","roleDisplay":"VerfasserIn","display":"Ahn, Euijoon"},{"family":"Lv","given":"Zhihan","roleDisplay":"VerfasserIn","display":"Lv, Zhihan","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Kim, Jinman","given":"Jinman","family":"Kim"},{"given":"David Dagan","family":"Feng","role":"aut","display":"Feng, David Dagan","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Explicit abnormality extraction for unsupervised motion artifact reduction in magnetic resonance imaging","title":"Explicit abnormality extraction for unsupervised motion artifact reduction in magnetic resonance imaging"}]} 
SRT |a ZHOUYUSHENEXPLICITAB2025