Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa

Background Deep learning (DL) models are effective pre-screening tools for detecting mismatch repair deficiency (dMMR) in colorectal carcinoma (CRC). These models have been trained and validated on large cohorts from the Northern Hemisphere, without representation of African samples. We sought to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aldera, Alessandro Pietro (VerfasserIn) , Cifci, Didem (VerfasserIn) , Veldhuizen, Gregory Patrick (VerfasserIn) , Tsai, Wan-Jung (VerfasserIn) , Pillay, Komala (VerfasserIn) , Boutall, Adam (VerfasserIn) , Brenner, Hermann (VerfasserIn) , Hoffmeister, Michael (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Ramesar, Raj (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 May 2025
In: Journal of clinical pathology
Year: 2025, Jahrgang: 79, Heft: 1, Pages: 50-56
ISSN:1472-4146
DOI:10.1136/jcp-2025-210053
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1136/jcp-2025-210053
Verlag, lizenzpflichtig, Volltext: https://jcp.bmj.com/content/early/2025/05/20/jcp-2025-210053
Volltext
Verfasserangaben:Alessandro Pietro Aldera, Didem Cifci, Gregory Patrick Veldhuizen, Wan-Jung Tsai, Komala Pillay, Adam Boutall, Hermann Brenner, Michael Hoffmeister, Jakob Nikolas Kather, Raj Ramesar

MARC

LEADER 00000caa a2200000 c 4500
001 1940485819
003 DE-627
005 20260112123806.0
007 cr uuu---uuuuu
008 251106s2025 xx |||||o 00| ||eng c
024 7 |a 10.1136/jcp-2025-210053  |2 doi 
035 |a (DE-627)1940485819 
035 |a (DE-599)KXP1940485819 
035 |a (OCoLC)1559714141 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Aldera, Alessandro Pietro  |e VerfasserIn  |0 (DE-588)138092202X  |0 (DE-627)1940487196  |4 aut 
245 1 0 |a Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa  |c Alessandro Pietro Aldera, Didem Cifci, Gregory Patrick Veldhuizen, Wan-Jung Tsai, Komala Pillay, Adam Boutall, Hermann Brenner, Michael Hoffmeister, Jakob Nikolas Kather, Raj Ramesar 
264 1 |c 20 May 2025 
300 |b Illustrationen, Diagramme 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 06.11.2025 
520 |a Background Deep learning (DL) models are effective pre-screening tools for detecting mismatch repair deficiency (dMMR) in colorectal carcinoma (CRC). These models have been trained and validated on large cohorts from the Northern Hemisphere, without representation of African samples. We sought to determine the performance of a DL model in an ethnically heterogeneous cohort of patients from South Africa. - Methods Our cohort comprised 197 CRC resection specimens, with scanned whole slide images tessellated and inputted into a transformer-based DL model trained on large international cohorts. Model performance was evaluated using area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. The maximal Youden’s J index was calculated to determine the optimal cut-off threshold for the model prediction score. - Results Our model yielded an AUROC of 0.91 (±0.05). Using a prediction score threshold of 0.620 produced an overall sensitivity of 85.7% (95% CI 73.3% to 92.9%) and a specificity of 82.4% (95% CI 75.5% to 87.7%). The false negative cases were predominantly left-sided (71.4%) and did not show the typical dMMR/microsatellite instability-high histological phenotype. Sensitivity was lower (50%-75%) in cases showing isolated PMS2 or MSH6 loss of staining. Calibrating the classification threshold to 0.470, the sensitivity was optimised to 95.6% (95% CI 86.3% to 98.9%) with a specificity of 69.6% (95% CI 61.8% to 76.4%). This would have resulted in excluding 103 cases (52.3%) from downstream immunohistochemical (IHC) or molecular testing. - Conclusions Following appropriate region-specific calibration, we have shown that this model could be employed to accurately prescreen for dMMR in CRC, thereby reducing the burden of downstream IHC and molecular testing in a resource-limited setting. 
650 4 |a Artificial Intelligence 
650 4 |a Colorectal Neoplasms 
650 4 |a Medical Oncology 
650 4 |a Neoplastic Syndromes, Hereditary 
700 1 |a Cifci, Didem  |e VerfasserIn  |4 aut 
700 1 |a Veldhuizen, Gregory Patrick  |e VerfasserIn  |4 aut 
700 1 |a Tsai, Wan-Jung  |e VerfasserIn  |4 aut 
700 1 |a Pillay, Komala  |e VerfasserIn  |4 aut 
700 1 |a Boutall, Adam  |e VerfasserIn  |4 aut 
700 1 |a Brenner, Hermann  |e VerfasserIn  |0 (DE-588)1020516445  |0 (DE-627)691247005  |0 (DE-576)360642136  |4 aut 
700 1 |a Hoffmeister, Michael  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Ramesar, Raj  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of clinical pathology  |d London : BMJ Publ. Group, 1947  |g 79(2025), 1, Seite 50-56  |h Online-Ressource  |w (DE-627)324614969  |w (DE-600)2028928-5  |w (DE-576)094505659  |x 1472-4146  |7 nnas  |a Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa 
773 1 8 |g volume:79  |g year:2025  |g number:1  |g pages:50-56  |g extent:7  |a Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa 
856 4 0 |u https://doi.org/10.1136/jcp-2025-210053  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://jcp.bmj.com/content/early/2025/05/20/jcp-2025-210053  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
992 |a 20251106 
993 |a Article 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 9 
998 |g 1020516445  |a Brenner, Hermann  |m 1020516445:Brenner, Hermann  |d 850000  |d 851600  |d 50000  |e 850000PB1020516445  |e 851600PB1020516445  |e 50000PB1020516445  |k 0/850000/  |k 1/850000/851600/  |k 0/50000/  |p 7 
999 |a KXP-PPN1940485819  |e 4797616121 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa","title":"Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South Africa"}],"origin":[{"dateIssuedDisp":"20 May 2025","dateIssuedKey":"2025"}],"note":["Gesehen am 06.11.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"physDesc":[{"noteIll":"Illustrationen, Diagramme","extent":"7 S."}],"name":{"displayForm":["Alessandro Pietro Aldera, Didem Cifci, Gregory Patrick Veldhuizen, Wan-Jung Tsai, Komala Pillay, Adam Boutall, Hermann Brenner, Michael Hoffmeister, Jakob Nikolas Kather, Raj Ramesar"]},"relHost":[{"recId":"324614969","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["324614969"],"zdb":["2028928-5"],"issn":["1472-4146"]},"title":[{"title":"Journal of clinical pathology","title_sort":"Journal of clinical pathology","subtitle":"JCP ; the scientific journal of the Association of Clinical Pathologists"}],"origin":[{"publisherPlace":"London","publisher":"BMJ Publ. Group","dateIssuedKey":"1947","dateIssuedDisp":"1947-"}],"note":["Gesehen am 02.06.22"],"pubHistory":["1.1947 -"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Deep learning predicts microsatellite instability status in colorectal carcinoma in an ethnically heterogeneous population in South AfricaJournal of clinical pathology","language":["eng"],"part":{"extent":"7","volume":"79","issue":"1","text":"79(2025), 1, Seite 50-56","year":"2025","pages":"50-56"},"titleAlt":[{"title":"JCP"}],"corporate":[{"display":"Association of Clinical Pathologists","role":"isb"}]}],"recId":"1940485819","id":{"doi":["10.1136/jcp-2025-210053"],"eki":["1940485819"]},"person":[{"role":"aut","given":"Alessandro Pietro","family":"Aldera","display":"Aldera, Alessandro Pietro"},{"family":"Cifci","display":"Cifci, Didem","role":"aut","given":"Didem"},{"role":"aut","given":"Gregory Patrick","family":"Veldhuizen","display":"Veldhuizen, Gregory Patrick"},{"given":"Wan-Jung","role":"aut","display":"Tsai, Wan-Jung","family":"Tsai"},{"display":"Pillay, Komala","family":"Pillay","role":"aut","given":"Komala"},{"given":"Adam","role":"aut","display":"Boutall, Adam","family":"Boutall"},{"family":"Brenner","display":"Brenner, Hermann","role":"aut","given":"Hermann"},{"display":"Hoffmeister, Michael","family":"Hoffmeister","given":"Michael","role":"aut"},{"display":"Kather, Jakob Nikolas","family":"Kather","given":"Jakob Nikolas","role":"aut"},{"family":"Ramesar","display":"Ramesar, Raj","role":"aut","given":"Raj"}],"language":["eng"]} 
SRT |a ALDERAALESDEEPLEARNI2020