What makes thickness-tolerant organic solar cells?

Relatively thick-film organic photovoltaics (OPVs) are desirable to spark commercialization through mass-printing methods. Thickness-resilient donor:acceptor blends are, however, scarce and not fully understood. The interplay between electronic, optical, and microstructural properties of the photoac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodríguez-Martínez, Xabier (VerfasserIn) , Tormann, Constantin (VerfasserIn) , Sanz-Lleó, Marta (VerfasserIn) , Dörling, Bernhard (VerfasserIn) , Gibert-Roca, Martí (VerfasserIn) , Harillo-Baños, Albert (VerfasserIn) , Torimtubun, Alfonsina Abat Amelenan (VerfasserIn) , Pascual-San-José, Enrique (VerfasserIn) , Jurado, José P. (VerfasserIn) , López-Mir, Laura (VerfasserIn) , Kemerink, Martijn (VerfasserIn) , Campoy-Quiles, Mariano (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2025
In: Advanced energy materials
Year: 2025, Pages: ?
ISSN:1614-6840
DOI:10.1002/aenm.202405735
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/aenm.202405735
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202405735
Volltext
Verfasserangaben:Xabier Rodríguez-Martínez, Constantin Tormann, Marta Sanz-Lleó, Bernhard Dörling, Martí Gibert-Roca, Albert Harillo-Baños, Alfonsina Abat Amelenan Torimtubun, Enrique Pascual-San-José, José P. Jurado, Laura López-Mir, Martijn Kemerink and Mariano Campoy-Quiles
Beschreibung
Zusammenfassung:Relatively thick-film organic photovoltaics (OPVs) are desirable to spark commercialization through mass-printing methods. Thickness-resilient donor:acceptor blends are, however, scarce and not fully understood. The interplay between electronic, optical, and microstructural properties of the photoactive layer (PAL) generates a multi-parametric space where rationalization is far from trivial. In this work, high-throughput experimentation, simulations, and machine learning (ML) methods are leveraged to provide material and device insights toward thickness-resilient OPVs. From a database of 720 inverted devices and 20 different donor:acceptor blends, two main blend families are identified in terms of their resilience against increased PAL thickness (>200 nm). These are archetypically represented by PBDB-T:ITIC (thickness-sensitive) and PTQ10:Y6 (thickness-resilient). Kinetic Monte Carlo (kMC) simulations elucidate that the blend morphology alone, either in the form of an effective medium or energy cascade, can explain the experimental short-circuit current density and open-circuit voltage trends without tweaking the recombination parameters (cf. drift-diffusion, DD). High fill factors (FFs) in thick-film devices cannot, however, be reproduced by the kMC or DD simulations. ML models show that complementary absorbing donors and acceptors (shifted absorption onsets) mixed in balanced weight ratios provide a favorable hole back-transfer efficiency to increase the FF in thick-film devices.
Beschreibung:Gesehen am 06.11.2025
Beschreibung:Online Resource
ISSN:1614-6840
DOI:10.1002/aenm.202405735