The Nordic-walking mechanism and its explanation of deconfined pseudocriticality from Wess-Zumino-Witten theory

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum...

Full description

Saved in:
Bibliographic Details
Main Authors: Hawashin, Bilal (Author) , Eichhorn, Astrid (Author) , Janssen, Lukas (Author) , Scherer, Michael (Author) , Ray, Shouryya (Author)
Format: Article (Journal)
Language:English
Published: 02 January 2025
In: Nature Communications
Year: 2025, Volume: 16, Pages: 1-13
ISSN:2041-1723
DOI:10.1038/s41467-024-54884-w
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-024-54884-w
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-024-54884-w
Get full text
Author Notes:Bilal Hawashin, Astrid Eichhorn, Lukas Janssen, Michael M. Scherer & Shouryya Ray
Description
Summary:The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu2(BO3)2. Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce. The origin of this behaviour has been a matter of considerable debate for several years. In this work, we demonstrate that the nature of the deconfined quantum critical point can be best understood in terms of a novel dynamical mechanism, termed Nordic walking. Nordic walking denotes a renormalisation group flow arising from a beta function that is flat over a range of couplings. This gives rise to a logarithmic flow that is faster than the well-known walking behaviour, associated with the annihilation and complexification of fixed points, but still significantly slower than the generic running of couplings. The Nordic-walking mechanism can thus explain weak first-order transitions, but may also play a role in high-energy physics, where it could solve hierarchy problems. We analyse the Wess-Zumino-Witten field theory pertinent to deconfined quantum critical points with a topological term in 2+1 dimensions. To this end, we construct an advanced functional renormalisation group approach based on higher-order regulators. We thereby calculate the beta function directly in 2+1 dimensions and provide evidence for Nordic walking.
Item Description:Gesehen am 10.11.2025
Physical Description:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-024-54884-w