Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML

Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eckardt, Jan-Niklas (VerfasserIn) , Hahn, Waldemar (VerfasserIn) , Ries, Rhonda E. (VerfasserIn) , Chrost, Szymon D. (VerfasserIn) , Winter, Susann (VerfasserIn) , Stasik, Sebastian (VerfasserIn) , Röllig, Christoph (VerfasserIn) , Platzbecker, Uwe (VerfasserIn) , Müller-Tidow, Carsten (VerfasserIn) , Serve, Hubert (VerfasserIn) , Baldus, Claudia (VerfasserIn) , Schliemann, Christoph (VerfasserIn) , Schäfer-Eckart, Kerstin (VerfasserIn) , Hanoun, Maher (VerfasserIn) , Kaufmann, Martin (VerfasserIn) , Burchert, Andreas (VerfasserIn) , Schetelig, Johannes (VerfasserIn) , Bornhäuser, Martin (VerfasserIn) , Wolfien, Markus (VerfasserIn) , Meshinchi, Soheil (VerfasserIn) , Thiede, Christian (VerfasserIn) , Middeke, Jan Moritz (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: May 2025
In: HemaSphere
Year: 2025, Jahrgang: 9, Heft: 5, Pages: 1-14
ISSN:2572-9241
DOI:10.1002/hem3.70132
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1002/hem3.70132
Verlag, kostenfrei, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/hem3.70132
Volltext
Verfasserangaben:Jan-Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke

MARC

LEADER 00000caa a2200000 c 4500
001 1940740592
003 DE-627
005 20251111113757.0
007 cr uuu---uuuuu
008 251110s2025 xx |||||o 00| ||eng c
024 7 |a 10.1002/hem3.70132  |2 doi 
035 |a (DE-627)1940740592 
035 |a (DE-599)KXP1940740592 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Eckardt, Jan-Niklas  |d 1991-  |e VerfasserIn  |0 (DE-588)1222283484  |0 (DE-627)1741296919  |4 aut 
245 1 0 |a Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML  |c Jan-Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke 
264 1 |c May 2025 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 07.Mai 2025 
500 |a Gesehen am 10.11.2025 
520 |a Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and TP53 alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2-year overall survival, achieving area-under-the-curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of NPM1, CEBPA, inv(16), and t(8;21) conferring favorable risk and alterations of TP53, RUNX1, ASXL1, del(5q), -7, and -17 conferring adverse risk, while FLT3-ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as TP53, ASXL1, or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context-sensitive AML treatment strategies. 
700 1 |a Hahn, Waldemar  |e VerfasserIn  |4 aut 
700 1 |a Ries, Rhonda E.  |e VerfasserIn  |4 aut 
700 1 |a Chrost, Szymon D.  |e VerfasserIn  |4 aut 
700 1 |a Winter, Susann  |e VerfasserIn  |4 aut 
700 1 |a Stasik, Sebastian  |e VerfasserIn  |4 aut 
700 1 |a Röllig, Christoph  |d 1971-  |e VerfasserIn  |0 (DE-588)122493168  |0 (DE-627)705929116  |0 (DE-576)293296049  |4 aut 
700 1 |a Platzbecker, Uwe  |e VerfasserIn  |4 aut 
700 1 |a Müller-Tidow, Carsten  |d 1968-  |e VerfasserIn  |0 (DE-588)1015101798  |0 (DE-627)705330230  |0 (DE-576)351197893  |4 aut 
700 1 |a Serve, Hubert  |e VerfasserIn  |4 aut 
700 1 |a Baldus, Claudia  |d 1972-  |e VerfasserIn  |0 (DE-588)122672631  |0 (DE-627)705995054  |0 (DE-576)293374945  |4 aut 
700 1 |a Schliemann, Christoph  |d 1977-  |e VerfasserIn  |0 (DE-588)129938548  |0 (DE-627)484462792  |0 (DE-576)297912186  |4 aut 
700 1 |a Schäfer-Eckart, Kerstin  |e VerfasserIn  |4 aut 
700 1 |a Hanoun, Maher  |e VerfasserIn  |4 aut 
700 1 |a Kaufmann, Martin  |e VerfasserIn  |4 aut 
700 1 |a Burchert, Andreas  |e VerfasserIn  |4 aut 
700 1 |a Schetelig, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Bornhäuser, Martin  |d 1966-  |e VerfasserIn  |0 (DE-588)1167559118  |0 (DE-627)1031176071  |0 (DE-576)511198817  |4 aut 
700 1 |a Wolfien, Markus  |e VerfasserIn  |4 aut 
700 1 |a Meshinchi, Soheil  |e VerfasserIn  |4 aut 
700 1 |a Thiede, Christian  |e VerfasserIn  |4 aut 
700 1 |a Middeke, Jan Moritz  |d 1980-  |e VerfasserIn  |0 (DE-588)1044764708  |0 (DE-627)77277319X  |0 (DE-576)398114358  |4 aut 
773 0 8 |i Enthalten in  |t HemaSphere  |d Hoboken : John Wiley & Sons Ltd., 2017  |g 9(2025), 5, Artikel-ID e70132, Seite 1-14  |h Online-Ressource  |w (DE-627)1015324924  |w (DE-600)2922183-3  |w (DE-576)500571066  |x 2572-9241  |7 nnas  |a Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML 
773 1 8 |g volume:9  |g year:2025  |g number:5  |g elocationid:e70132  |g pages:1-14  |g extent:14  |a Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML 
856 4 0 |u https://doi.org/10.1002/hem3.70132  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/hem3.70132  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251110 
993 |a Article 
994 |a 2025 
998 |g 1015101798  |a Müller-Tidow, Carsten  |m 1015101798:Müller-Tidow, Carsten  |d 910000  |d 910100  |e 910000PM1015101798  |e 910100PM1015101798  |k 0/910000/  |k 1/910000/910100/  |p 9 
999 |a KXP-PPN1940740592  |e 4801861415 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Jan-Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke"]},"id":{"eki":["1940740592"],"doi":["10.1002/hem3.70132"]},"physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"recId":"1940740592","relHost":[{"title":[{"title":"HemaSphere","title_sort":"HemaSphere","subtitle":"open access journal of the European Hematology Association"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 18.01.2024"],"origin":[{"publisher":"John Wiley & Sons Ltd. ; Wolters Kluwer Health","publisherPlace":"Hoboken ; [Philadelphia, Pennsylvania]","dateIssuedKey":"2024","dateIssuedDisp":"2024-"}],"disp":"Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AMLHemaSphere","recId":"1015324924","physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["1015324924"],"issn":["2572-9241"],"zdb":["2922183-3"]},"part":{"year":"2025","volume":"9","pages":"1-14","extent":"14","text":"9(2025), 5, Artikel-ID e70132, Seite 1-14","issue":"5"},"pubHistory":["Volume 1, issue 1 (December 2017)-"],"corporate":[{"display":"European Hematology Association","role":"isb"}]}],"person":[{"display":"Eckardt, Jan-Niklas","family":"Eckardt","role":"aut","given":"Jan-Niklas"},{"family":"Hahn","role":"aut","given":"Waldemar","display":"Hahn, Waldemar"},{"display":"Ries, Rhonda E.","family":"Ries","role":"aut","given":"Rhonda E."},{"family":"Chrost","given":"Szymon D.","role":"aut","display":"Chrost, Szymon D."},{"display":"Winter, Susann","given":"Susann","role":"aut","family":"Winter"},{"given":"Sebastian","role":"aut","family":"Stasik","display":"Stasik, Sebastian"},{"family":"Röllig","given":"Christoph","role":"aut","display":"Röllig, Christoph"},{"display":"Platzbecker, Uwe","role":"aut","given":"Uwe","family":"Platzbecker"},{"family":"Müller-Tidow","given":"Carsten","role":"aut","display":"Müller-Tidow, Carsten"},{"display":"Serve, Hubert","role":"aut","given":"Hubert","family":"Serve"},{"display":"Baldus, Claudia","role":"aut","given":"Claudia","family":"Baldus"},{"display":"Schliemann, Christoph","given":"Christoph","role":"aut","family":"Schliemann"},{"family":"Schäfer-Eckart","role":"aut","given":"Kerstin","display":"Schäfer-Eckart, Kerstin"},{"display":"Hanoun, Maher","family":"Hanoun","role":"aut","given":"Maher"},{"display":"Kaufmann, Martin","family":"Kaufmann","role":"aut","given":"Martin"},{"given":"Andreas","role":"aut","family":"Burchert","display":"Burchert, Andreas"},{"given":"Johannes","role":"aut","family":"Schetelig","display":"Schetelig, Johannes"},{"display":"Bornhäuser, Martin","family":"Bornhäuser","role":"aut","given":"Martin"},{"role":"aut","given":"Markus","family":"Wolfien","display":"Wolfien, Markus"},{"display":"Meshinchi, Soheil","role":"aut","given":"Soheil","family":"Meshinchi"},{"display":"Thiede, Christian","family":"Thiede","given":"Christian","role":"aut"},{"given":"Jan Moritz","role":"aut","family":"Middeke","display":"Middeke, Jan Moritz"}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"May 2025"}],"note":["Online verfügbar: 07.Mai 2025","Gesehen am 10.11.2025"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML","title_sort":"Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML"}]} 
SRT |a ECKARDTJANAGESTRATIF2025