Euclid preparation: LXVIII. Extracting physical parameters from galaxies with machine learning

The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kovačić, Inja (VerfasserIn) , Jahnke, Knud (VerfasserIn) , Sakr, Ziad (VerfasserIn) , Seidel, Gregor (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 03 April 2025
In: Astronomy and astrophysics
Year: 2025, Jahrgang: 695, Pages: 1-26
ISSN:1432-0746
DOI:10.1051/0004-6361/202453111
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1051/0004-6361/202453111
Verlag, kostenfrei, Volltext: https://www.aanda.org/articles/aa/abs/2025/03/aa53111-24/aa53111-24.html
Volltext
Verfasserangaben:I. Kovačić, K. Jahnke, Z. Sakr, G. Seidel [und viele weitere]

MARC

LEADER 00000naa a2200000 c 4500
001 1940809592
003 DE-627
005 20251111125215.0
007 cr uuu---uuuuu
008 251111s2025 xx |||||o 00| ||eng c
024 7 |a 10.1051/0004-6361/202453111  |2 doi 
035 |a (DE-627)1940809592 
035 |a (DE-599)KXP1940809592 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Kovačić, Inja  |e VerfasserIn  |0 (DE-588)1381288308  |0 (DE-627)1940812011  |4 aut 
245 1 0 |a Euclid preparation  |b LXVIII. Extracting physical parameters from galaxies with machine learning  |c I. Kovačić, K. Jahnke, Z. Sakr, G. Seidel [und viele weitere] 
264 1 |c 03 April 2025 
300 |b Diagramme 
300 |a 26 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 11.11.2025 
520 |a The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free synthetic high-resolution (100 pc × 100 pc) imaging data in the <i>Euclid<i/> photometric bands for a set of 1154 galaxies from the TNG50 cosmological simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar populations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely, stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50 follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time requirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equivalent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across large samples. 
700 1 |a Jahnke, Knud  |e VerfasserIn  |0 (DE-588)1200875141  |0 (DE-627)1683870255  |4 aut 
700 1 |a Sakr, Ziad  |e VerfasserIn  |0 (DE-588)1296375315  |0 (DE-627)1852803258  |4 aut 
700 1 |a Seidel, Gregor  |d 1977-  |e VerfasserIn  |0 (DE-588)139967559  |0 (DE-627)703521993  |0 (DE-576)314004769  |4 aut 
773 0 8 |i Enthalten in  |t Astronomy and astrophysics  |d Les Ulis : EDP Sciences, 1969  |g 695(2025) vom: März, Artikel-ID A284, Seite 1-26  |h Online-Ressource  |w (DE-627)253390222  |w (DE-600)1458466-9  |w (DE-576)072283351  |x 1432-0746  |7 nnas  |a Euclid preparation LXVIII. Extracting physical parameters from galaxies with machine learning 
773 1 8 |g volume:695  |g year:2025  |g month:03  |g elocationid:A284  |g pages:1-26  |g extent:26  |a Euclid preparation LXVIII. Extracting physical parameters from galaxies with machine learning 
856 4 0 |u https://doi.org/10.1051/0004-6361/202453111  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.aanda.org/articles/aa/abs/2025/03/aa53111-24/aa53111-24.html  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251111 
993 |a Article 
994 |a 2025 
998 |g 139967559  |a Seidel, Gregor  |m 139967559:Seidel, Gregor  |d 130000  |e 130000PS139967559  |k 0/130000/  |p 149 
998 |g 1296375315  |a Sakr, Ziad  |m 1296375315:Sakr, Ziad  |p 141 
998 |g 1200875141  |a Jahnke, Knud  |m 1200875141:Jahnke, Knud  |d 130000  |e 130000PJ1200875141  |k 0/130000/  |p 85 
999 |a KXP-PPN1940809592  |e 480204125X 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"26 S.","noteIll":"Diagramme"}],"id":{"doi":["10.1051/0004-6361/202453111"],"eki":["1940809592"]},"title":[{"subtitle":"LXVIII. Extracting physical parameters from galaxies with machine learning","title":"Euclid preparation","title_sort":"Euclid preparation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"03 April 2025"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Euclid preparation LXVIII. Extracting physical parameters from galaxies with machine learningAstronomy and astrophysics","corporate":[{"display":"European Southern Observatory","role":"isb"}],"titleAlt":[{"title":"Astronomy & astrophysics"},{"title":"a European journal"}],"part":{"extent":"26","pages":"1-26","text":"695(2025) vom: März, Artikel-ID A284, Seite 1-26","volume":"695","year":"2025"},"language":["eng"],"note":["Gesehen am 21.06.2024","Erscheint 36mal jährlich in 12 Bänden zu je 3 Ausgaben","Fortsetzung der Druck-Ausgabe"],"pubHistory":["1.1969 -"],"id":{"issn":["1432-0746"],"eki":["253390222"],"zdb":["1458466-9"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Astronomy and astrophysics","title":"Astronomy and astrophysics","subtitle":"an international weekly journal"}],"origin":[{"publisher":"EDP Sciences ; Springer","dateIssuedDisp":"1969-","dateIssuedKey":"1969","publisherPlace":"Les Ulis ; Berlin ; Heidelberg"}],"name":{"displayForm":["European Southern Observatory (ESO)"]},"recId":"253390222"}],"language":["eng"],"name":{"displayForm":["I. Kovačić, K. Jahnke, Z. Sakr, G. Seidel [und viele weitere]"]},"note":["Gesehen am 11.11.2025"],"person":[{"role":"aut","family":"Kovačić","given":"Inja","display":"Kovačić, Inja"},{"given":"Knud","display":"Jahnke, Knud","family":"Jahnke","role":"aut"},{"display":"Sakr, Ziad","given":"Ziad","family":"Sakr","role":"aut"},{"family":"Seidel","role":"aut","given":"Gregor","display":"Seidel, Gregor"}],"recId":"1940809592"} 
SRT |a KOVACICINJEUCLIDPREP0320