Interpretable type 2 diabetes incidence prediction with AutoScore: A model based on standard clinical parameters

Objective - Accurate prediction of type 2 diabetes mellitus (T2DM) onset is critical to enable timely interventions and preventive strategies. Although machine learning (ML) approaches have shown promise in risk prediction, their complexity often limits clinical implementation. There is a need for i...

Full description

Saved in:
Bibliographic Details
Main Authors: Leiherer, Andreas (Author) , Schnetzer, Laura (Author) , Mink, Sylvia (Author) , Mader, Arthur (Author) , Mündlein, Axel (Author) , Bermeitinger, Bernhard (Author) , Moissl-Blanke, Angela P. (Author) , März, Winfried (Author) , Hammerer-Lercher, Angelika (Author) , Kleber, Marcus E. (Author) , Drexel, Heinz (Author)
Format: Article (Journal)
Language:English
Published: February 2026
In: International journal of medical informatics
Year: 2026, Volume: 206, Pages: 1-8
ISSN:1872-8243
DOI:10.1016/j.ijmedinf.2025.106161
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.ijmedinf.2025.106161
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S1386505625003788
Get full text
Author Notes:Andreas Leiherer, Laura Schnetzer, Sylvia Mink, Arthur Mader, Axel Mündlein, Bernhard Bermeitinger, Angela P. Moissl-Blanke, Winfried März, Angelika Hammerer-Lercher, Marcus E. Kleber, Heinz Drexel

MARC

LEADER 00000caa a2200000 c 4500
001 1940949815
003 DE-627
005 20251120193726.0
007 cr uuu---uuuuu
008 251112s2026 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ijmedinf.2025.106161  |2 doi 
035 |a (DE-627)1940949815 
035 |a (DE-599)KXP1940949815 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Leiherer, Andreas  |e VerfasserIn  |0 (DE-588)137170432  |0 (DE-627)590348469  |0 (DE-576)302383352  |4 aut 
245 1 0 |a Interpretable type 2 diabetes incidence prediction with AutoScore  |b A model based on standard clinical parameters  |c Andreas Leiherer, Laura Schnetzer, Sylvia Mink, Arthur Mader, Axel Mündlein, Bernhard Bermeitinger, Angela P. Moissl-Blanke, Winfried März, Angelika Hammerer-Lercher, Marcus E. Kleber, Heinz Drexel 
264 1 |c February 2026 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 18. Oktober 2025, Artikelversion: 1. November 2025 
500 |a Gesehen am 12.11.2025 
520 |a Objective - Accurate prediction of type 2 diabetes mellitus (T2DM) onset is critical to enable timely interventions and preventive strategies. Although machine learning (ML) approaches have shown promise in risk prediction, their complexity often limits clinical implementation. There is a need for interpretable, user-friendly models that retain predictive strength. - Methods - We studied 904 cardiovascular risk patients without T2DM at baseline, assessing 71 anthropometric, clinical, and laboratory variables. Over a four-year follow-up, 10 % developed T2DM. We applied AutoScore, an interpretable ML framework that generates parsimonious, point-based risk scores, and compared its performance with an optimized Support Vector Machine (SVM) with a linear kernel. The SVM was refined using feature selection, Tomek link removal, and up-sampling to address class imbalance. - Results - Both approaches consistently identified fasting glucose, OGTT glucose, and the Matsuda index (reflecting glucose-insulin dynamics) as key predictors. The optimized SVM model achieved a higher balanced accuracy (75 % vs. 67 %), specificity (80 % vs. 77 %), and AUC (0.72 vs. 0.69) compared to AutoScore. However, AutoScore, other than the SVM model, relied exclusively on a small set of routinely available accessible parameters and thereby offered superior interpretability and ease of integration into clinical workflows. External validation in an independent cohort further confirmed the robustness of the AutoScore model. - Conclusion - Although black-box models such as SVM deliver slightly higher predictive accuracy, interpretable frameworks like AutoScore provide clinically actionable risk stratification based on standard data. Their transparency and simplicity make them particularly valuable for real-world decision support. 
650 4 |a Artificial intelligence 
650 4 |a Biomarker 
650 4 |a Cardiovascular risk 
650 4 |a Diabetes incidence 
650 4 |a Machine learning 
650 4 |a Risk prediction 
700 1 |a Schnetzer, Laura  |e VerfasserIn  |4 aut 
700 1 |a Mink, Sylvia  |e VerfasserIn  |4 aut 
700 1 |a Mader, Arthur  |e VerfasserIn  |4 aut 
700 1 |a Mündlein, Axel  |e VerfasserIn  |4 aut 
700 1 |a Bermeitinger, Bernhard  |e VerfasserIn  |4 aut 
700 1 |a Moissl-Blanke, Angela P.  |d 1984-  |e VerfasserIn  |0 (DE-588)1192773756  |0 (DE-627)1671247248  |4 aut 
700 1 |a März, Winfried  |d 1958-  |e VerfasserIn  |0 (DE-588)1027603599  |0 (DE-627)729463605  |0 (DE-576)373454635  |4 aut 
700 1 |a Hammerer-Lercher, Angelika  |e VerfasserIn  |4 aut 
700 1 |a Kleber, Marcus E.  |d 1974-  |e VerfasserIn  |0 (DE-588)1030135177  |0 (DE-627)734830440  |0 (DE-576)377941379  |4 aut 
700 1 |a Drexel, Heinz  |e VerfasserIn  |0 (DE-588)1254286195  |0 (DE-627)1796910260  |4 aut 
773 0 8 |i Enthalten in  |t International journal of medical informatics  |d Amsterdam [u.a.] : Elsevier, 1997  |g 206(2026) vom: Feb., Artikel-ID 106161, Seite 1-8  |h Online-Ressource  |w (DE-627)265783720  |w (DE-600)1466296-6  |w (DE-576)074890913  |x 1872-8243  |7 nnas  |a Interpretable type 2 diabetes incidence prediction with AutoScore A model based on standard clinical parameters 
773 1 8 |g volume:206  |g year:2026  |g month:02  |g elocationid:106161  |g pages:1-8  |g extent:8  |a Interpretable type 2 diabetes incidence prediction with AutoScore A model based on standard clinical parameters 
856 4 0 |u https://doi.org/10.1016/j.ijmedinf.2025.106161  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S1386505625003788  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20251112 
993 |a Article 
994 |a 2026 
998 |g 1030135177  |a Kleber, Marcus E.  |m 1030135177:Kleber, Marcus E.  |d 60000  |d 61400  |e 60000PK1030135177  |e 61400PK1030135177  |k 0/60000/  |k 1/60000/61400/  |p 10 
998 |g 1027603599  |a März, Winfried  |m 1027603599:März, Winfried  |d 910000  |d 910100  |d 60000  |d 61400  |e 910000PM1027603599  |e 910100PM1027603599  |e 60000PM1027603599  |e 61400PM1027603599  |k 0/910000/  |k 1/910000/910100/  |k 0/60000/  |k 1/60000/61400/  |p 8 
998 |g 1192773756  |a Moissl-Blanke, Angela P.  |m 1192773756:Moissl-Blanke, Angela P.  |d 60000  |d 61400  |e 60000PM1192773756  |e 61400PM1192773756  |k 0/60000/  |k 1/60000/61400/  |p 7 
999 |a KXP-PPN1940949815  |e 4803411557 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2026","dateIssuedDisp":"February 2026"}],"note":["Online verfügbar: 18. Oktober 2025, Artikelversion: 1. November 2025","Gesehen am 12.11.2025"],"name":{"displayForm":["Andreas Leiherer, Laura Schnetzer, Sylvia Mink, Arthur Mader, Axel Mündlein, Bernhard Bermeitinger, Angela P. Moissl-Blanke, Winfried März, Angelika Hammerer-Lercher, Marcus E. Kleber, Heinz Drexel"]},"recId":"1940949815","relHost":[{"note":["Gesehen am 05.06.2018"],"disp":"Interpretable type 2 diabetes incidence prediction with AutoScore A model based on standard clinical parametersInternational journal of medical informatics","physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International journal of medical informatics","title_sort":"International journal of medical informatics"}],"language":["eng"],"origin":[{"publisherPlace":"Amsterdam [u.a.]","dateIssuedKey":"1997","dateIssuedDisp":"1997-","publisher":"Elsevier"}],"recId":"265783720","type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["1466296-6"],"issn":["1872-8243"],"eki":["265783720"]},"pubHistory":["Volume 44, issue 1 (March 1997)-"],"part":{"pages":"1-8","text":"206(2026) vom: Feb., Artikel-ID 106161, Seite 1-8","volume":"206","year":"2026","extent":"8"}}],"title":[{"subtitle":"A model based on standard clinical parameters","title":"Interpretable type 2 diabetes incidence prediction with AutoScore","title_sort":"Interpretable type 2 diabetes incidence prediction with AutoScore"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.1016/j.ijmedinf.2025.106161"],"eki":["1940949815"]},"physDesc":[{"extent":"8 S."}],"language":["eng"],"person":[{"family":"Leiherer","given":"Andreas","display":"Leiherer, Andreas","role":"aut"},{"family":"Schnetzer","given":"Laura","display":"Schnetzer, Laura","role":"aut"},{"given":"Sylvia","family":"Mink","role":"aut","display":"Mink, Sylvia"},{"role":"aut","display":"Mader, Arthur","given":"Arthur","family":"Mader"},{"given":"Axel","family":"Mündlein","role":"aut","display":"Mündlein, Axel"},{"display":"Bermeitinger, Bernhard","role":"aut","family":"Bermeitinger","given":"Bernhard"},{"display":"Moissl-Blanke, Angela P.","role":"aut","family":"Moissl-Blanke","given":"Angela P."},{"given":"Winfried","family":"März","role":"aut","display":"März, Winfried"},{"given":"Angelika","family":"Hammerer-Lercher","role":"aut","display":"Hammerer-Lercher, Angelika"},{"given":"Marcus E.","family":"Kleber","role":"aut","display":"Kleber, Marcus E."},{"family":"Drexel","given":"Heinz","display":"Drexel, Heinz","role":"aut"}]} 
SRT |a LEIHERERANINTERPRETA2026