Motivic p-adic tame cohomology

We construct a comparison functor between (A(1)-local) tame motives and ((sic)-local) log-etale motives over a field of positive characteristic. This generalizes Binda-Park-Ostv ae r's comparison for the Nisnevich topology. As a consequence, we construct an E-infinity-ring spectrum Hz/p(m) repr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Merici, Alberto (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: Oct 2025
In: Bulletin of the London Mathematical Society
Year: 2025, Jahrgang: 57, Heft: 10, Pages: 3194-3210
ISSN:1469-2120
DOI:10.1112/blms.70151
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/blms.70151
Volltext
Verfasserangaben:Alberto Merici
Beschreibung
Zusammenfassung:We construct a comparison functor between (A(1)-local) tame motives and ((sic)-local) log-etale motives over a field of positive characteristic. This generalizes Binda-Park-Ostv ae r's comparison for the Nisnevich topology. As a consequence, we construct an E-infinity-ring spectrum Hz/p(m) representing mod p(m) tame motivic cohomology: the existence of this ring spectrum and the usual properties of motives imply some results on tame motivic cohomology and a comparison with log & eacute;tale motivic cohomology.
Beschreibung:Gesehen am 13.11.2025
Beschreibung:Online Resource
ISSN:1469-2120
DOI:10.1112/blms.70151