A conceptual model for converting OpenStreetMap contribution to geospatial machine learning training data

In the recent decade, Volunteered Geographical Information (VGI), in particular the OpenStreetMap (OSM), has helped to fill substantial data gaps in base maps, especially in Global South, thus has become a promising source of massive, free training data together with rich and detailed semantic infor...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Hao (Author) , Zipf, Alexander (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 01 Jun 2022
In: XXIV ISPRS Congress "Imaging today, foreseeing tomorrow", Commission IV
Year: 2022, Pages: 253-259
DOI:10.5194/isprs-archives-XLIII-B4-2022-253-2022
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-253-2022
Verlag, kostenfrei, Volltext: https://isprs-archives.copernicus.org/articles/XLIII-B4-2022/253/2022/
Get full text
Author Notes:H. Li, A. Zipf

MARC

LEADER 00000naa a2200000 c 4500
001 194118538X
003 DE-627
005 20251113155120.0
007 cr uuu---uuuuu
008 251113s2022 xx |||||o 00| ||eng c
024 7 |a 10.5194/isprs-archives-XLIII-B4-2022-253-2022  |2 doi 
035 |a (DE-627)194118538X 
035 |a (DE-599)KXP194118538X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
245 1 2 |a A conceptual model for converting OpenStreetMap contribution to geospatial machine learning training data  |c H. Li, A. Zipf 
264 1 |c 01 Jun 2022 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.11.2025 
520 |a In the recent decade, Volunteered Geographical Information (VGI), in particular the OpenStreetMap (OSM), has helped to fill substantial data gaps in base maps, especially in Global South, thus has become a promising source of massive, free training data together with rich and detailed semantic information for geospatial artificial intelligence (GeoAI) applications. Although intensive works have explored the potential of generating training data from OSM, a systematic approach of harvesting OSM contribution as quality-aware training data for different GeoAI tasks is still missing. To fill this research gap, we proposed a conceptual model consisting of three major components: historical OSM and external datasets, quality indicators, and GeoAI models. As a proof of concept, we validated our conceptual model with an example task of detecting OSM missing buildings in Mozambique, where the impact of different error sources (e.g., completeness, alignment, rotation) in training data were compared and investigated in a quantitative manner. The lessons learned in this paper shed important lights on cooperating OSM data quality aspects with the development of more explainable GeoAI models. 
650 4 |a crowdsourcing 
650 4 |a data quality 
650 4 |a GeoAI 
650 4 |a machine learning 
650 4 |a OpenStreetMap 
650 4 |a Volunteered geographical information 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |a ISPRS Congress (24. : 2022 : Nizza; Online)  |t XXIV ISPRS Congress "Imaging today, foreseeing tomorrow", Commission IV  |d [Göttingen] : Copernicus Publications, 2022  |g (2022), Seite 253-259  |h 1 Online-Ressource  |w (DE-627)1917813929  |7 nnam 
773 1 8 |g year:2022  |g pages:253-259  |g extent:7  |a A conceptual model for converting OpenStreetMap contribution to geospatial machine learning training data 
856 4 0 |u https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-253-2022  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://isprs-archives.copernicus.org/articles/XLIII-B4-2022/253/2022/  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251113 
993 |a ConferencePaper 
994 |a 2022 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 2  |y j 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN194118538X  |e 480449409X 
BIB |a Y 
JSO |a {"language":["eng"],"name":{"displayForm":["H. Li, A. Zipf"]},"recId":"194118538X","person":[{"given":"Hao","display":"Li, Hao","role":"aut","family":"Li"},{"display":"Zipf, Alexander","given":"Alexander","family":"Zipf","role":"aut"}],"note":["Gesehen am 13.11.2025"],"title":[{"title_sort":"conceptual model for converting OpenStreetMap contribution to geospatial machine learning training data","title":"A conceptual model for converting OpenStreetMap contribution to geospatial machine learning training data"}],"type":{"bibl":"chapter","media":"Online-Ressource"},"physDesc":[{"extent":"7 S."}],"id":{"doi":["10.5194/isprs-archives-XLIII-B4-2022-253-2022"],"eki":["194118538X"]},"relHost":[{"language":["eng"],"part":{"year":"2022","pages":"253-259","extent":"7","text":"(2022), Seite 253-259"},"relMultPart":[{"origin":[{"publisher":"Copernicus Publications","dateIssuedDisp":"[2011?]-","publisherPlace":"Katlenburg-Lindau"}],"title":[{"title_sort":"International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","title":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences"}],"id":{"zdb":["2874092-0"],"issn":["2194-9034"],"eki":["872241335"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"872241335","disp":"The international archives of the photogrammetry, remote sensing and spatial information sciences","type":{"bibl":"serial","media":"Online-Ressource"},"corporate":[{"display":"International Society for Photogrammetry and Remote Sensing","role":"isb"}],"dispAlt":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","pubHistory":["2011 [?]-"],"note":["Gesehen am 10.11.2016"],"language":["eng"],"part":{"number":["volume 43, B4 (2022)"],"number_sort":["43,B4"]}}],"note":["\"Despite the uncertainty and turmoil caused by the COVID-19 pandemic, the 2022 edition of the Congress is going to take place in person in Nice (France, 6-11 June 2022) and online, with a significant expected turnout: 1,600 participants have registered including 300 online participation as of April 25.\" - Vorwort","Literaturangaben"],"corporate":[{"role":"aut","display":"ISPRS Congress (24., 2022, Nizza; Online)"},{"display":"International Society for Photogrammetry and Remote Sensing","role":"orm"},{"role":"isb","display":"International Society for Photogrammetry and Remote Sensing"}],"type":{"media":"Online-Ressource","bibl":"book"},"disp":"ISPRS Congress (24. : 2022 : Nizza; Online)XXIV ISPRS Congress \"Imaging today, foreseeing tomorrow\", Commission IV","titleAlt":[{"title":"XXIV ISPRS Congress (2022 edition), 6-11 June 2022, Nice, France"}],"name":{"displayForm":["editor(s): S. Zlatanova, G. Sithole, and J. Barton"]},"recId":"1917813929","person":[{"role":"edt","family":"Zlatanova","given":"S.","display":"Zlatanova, S."}],"title":[{"title_sort":"XXIV ISPRS Congress \"Imaging today, foreseeing tomorrow\", Commission IV","subtitle":"2022 edition, 6-11 June 2022, Nice, France","title":"XXIV ISPRS Congress \"Imaging today, foreseeing tomorrow\", Commission IV"}],"id":{"eki":["1917813929"]},"physDesc":[{"noteIll":"Illustrationen","extent":"1 Online-Ressource"}],"origin":[{"dateIssuedKey":"2022","publisherPlace":"[Göttingen] ; Hannover, Germany","publisher":"Copernicus Publications ; ISPRS","dateIssuedDisp":"[2022]"}]}],"origin":[{"dateIssuedKey":"2022","dateIssuedDisp":"01 Jun 2022"}]} 
SRT |a LIHAOZIPFACONCEPTUAL0120