Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning

Determining the location of a building’s entrance is crucial to location-based services, such as wayfinding for pedestrians. Unfortunately, entrance information is often missing from current mainstream map providers such as Google Maps. Frequently, automatic approaches for detecting building entranc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hu, Xuke (VerfasserIn) , Noskov, Alexey (VerfasserIn) , Fan, Hongchao (VerfasserIn) , Novack, Tessio (VerfasserIn) , Li, Hao (VerfasserIn) , Gu, Fuqiang (VerfasserIn) , Shang, Jianga (VerfasserIn) , Zipf, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 Feb 2021
In: International journal of geographical information science
Year: 2021, Jahrgang: 35, Heft: 9, Pages: 1773-1801
ISSN:1365-8824
DOI:10.1080/13658816.2020.1861282
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/13658816.2020.1861282
Volltext
Verfasserangaben:Xuke Hu, Alexey Noskov, Hongchao Fan, Tessio Novack, Hao Li, Fuqiang Gu, Jianga Shang and Alexander Zipf

MARC

LEADER 00000naa a2200000 c 4500
001 1941190227
003 DE-627
005 20251113170304.0
007 cr uuu---uuuuu
008 251113s2021 xx |||||o 00| ||eng c
024 7 |a 10.1080/13658816.2020.1861282  |2 doi 
035 |a (DE-627)1941190227 
035 |a (DE-599)KXP1941190227 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Hu, Xuke  |d 1989-  |e VerfasserIn  |0 (DE-588)116111579X  |0 (DE-627)102452955X  |0 (DE-576)50636609X  |4 aut 
245 1 0 |a Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning  |c Xuke Hu, Alexey Noskov, Hongchao Fan, Tessio Novack, Hao Li, Fuqiang Gu, Jianga Shang and Alexander Zipf 
264 1 |c 04 Feb 2021 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.11.2025 
520 |a Determining the location of a building’s entrance is crucial to location-based services, such as wayfinding for pedestrians. Unfortunately, entrance information is often missing from current mainstream map providers such as Google Maps. Frequently, automatic approaches for detecting building entrances are based on street-level images that are not widely available. To address this issue, we propose a more general approach for inferring the main entrances of public buildings based on the association between spatial elements extracted from OpenStreetMap. In particular, we adopt three binary classification approaches, weighted random forest, balanced random forest, and smooth-boost to model the association relationship. There are two types of features considered in the classification: intrinsic features derived from building footprints and extrinsic features derived from spatial contexts, such as roads, green spaces, bicycle parking areas, and neighboring buildings. We conducted extensive experiments on 320 public buildings with an average perimeter of 350 m. The experimental results showed that the locations of building entrances estimated by the weighted random forest and balanced random forest models have a mean linear distance error of 21 m and a mean path distance error of 22 m, ruling out 90% of the incorrect locations of the main entrance of buildings. 
650 4 |a imbalanced learning 
650 4 |a Main entrance tagging 
650 4 |a OpenStreetMap 
650 4 |a random forest 
700 1 |a Noskov, Alexey  |e VerfasserIn  |4 aut 
700 1 |a Fan, Hongchao  |e VerfasserIn  |4 aut 
700 1 |a Novack, Tessio  |e VerfasserIn  |4 aut 
700 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
700 1 |a Gu, Fuqiang  |e VerfasserIn  |4 aut 
700 1 |a Shang, Jianga  |e VerfasserIn  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |t International journal of geographical information science  |d London : Taylor & Francis, 1997  |g 35(2021), 9, Seite 1773-1801  |h Online-Ressource  |w (DE-627)302468676  |w (DE-600)1491393-8  |w (DE-576)079720056  |x 1365-8824  |7 nnas  |a Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning 
773 1 8 |g volume:35  |g year:2021  |g number:9  |g pages:1773-1801  |g extent:29  |a Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning 
856 4 0 |u https://doi.org/10.1080/13658816.2020.1861282  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20251113 
993 |a Article 
994 |a 2021 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 8  |y j 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 5 
998 |g 116111579X  |a Hu, Xuke  |m 116111579X:Hu, Xuke  |p 1  |x j 
999 |a KXP-PPN1941190227  |e 4804512454 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"id":{"issn":["1365-8824"],"eki":["302468676"],"zdb":["1491393-8"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"International journal of geographical information science","title_sort":"International journal of geographical information science"}],"origin":[{"dateIssuedKey":"1997","publisherPlace":"London","publisher":"Taylor & Francis","dateIssuedDisp":"1997-"}],"recId":"302468676","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learningInternational journal of geographical information science","titleAlt":[{"title":"IJGIS"}],"part":{"pages":"1773-1801","extent":"29","issue":"9","text":"35(2021), 9, Seite 1773-1801","year":"2021","volume":"35"},"language":["eng"],"note":["Gesehen am 18.11.24"],"pubHistory":["11.1997 -"]}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"04 Feb 2021"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning","title_sort":"Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning"}],"id":{"eki":["1941190227"],"doi":["10.1080/13658816.2020.1861282"]},"physDesc":[{"extent":"29 S."}],"person":[{"family":"Hu","role":"aut","display":"Hu, Xuke","given":"Xuke"},{"given":"Alexey","display":"Noskov, Alexey","family":"Noskov","role":"aut"},{"display":"Fan, Hongchao","given":"Hongchao","family":"Fan","role":"aut"},{"role":"aut","family":"Novack","given":"Tessio","display":"Novack, Tessio"},{"display":"Li, Hao","given":"Hao","family":"Li","role":"aut"},{"role":"aut","family":"Gu","given":"Fuqiang","display":"Gu, Fuqiang"},{"given":"Jianga","display":"Shang, Jianga","role":"aut","family":"Shang"},{"given":"Alexander","display":"Zipf, Alexander","role":"aut","family":"Zipf"}],"recId":"1941190227","note":["Gesehen am 13.11.2025"],"name":{"displayForm":["Xuke Hu, Alexey Noskov, Hongchao Fan, Tessio Novack, Hao Li, Fuqiang Gu, Jianga Shang and Alexander Zipf"]},"language":["eng"]} 
SRT |a HUXUKENOSKTAGGINGTHE0420