Pure interaction effects unseen by Random Forests

Random Forests are widely claimed to capture interactions well. However, some simple examples suggest that they perform poorly in the presence of certain pure interactions that the conventional CART criterion struggles to capture during tree construction. Motivated from this, it is argued that simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Blum, Ricardo (VerfasserIn) , Hiabu, Munir (VerfasserIn) , Mammen, Enno (VerfasserIn) , Meyer, Joseph Theo (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2025
In: Computational statistics & data analysis
Year: 2025, Jahrgang: 212, Pages: 1-14
DOI:10.1016/j.csda.2025.108237
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.csda.2025.108237
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0167947325001136
Volltext
Verfasserangaben:Ricardo Blum, Munir Hiabu, Enno Mammen, Joseph T. Meyer
Beschreibung
Zusammenfassung:Random Forests are widely claimed to capture interactions well. However, some simple examples suggest that they perform poorly in the presence of certain pure interactions that the conventional CART criterion struggles to capture during tree construction. Motivated from this, it is argued that simple alternative partitioning schemes used in the tree growing procedure can enhance identification of these interactions. In a simulation study these variants are compared to conventional Random Forests and Extremely Randomized Trees. The results validate that the modifications considered enhance the model's fitting ability in scenarios where pure interactions play a crucial role. Finally, the methods are applied to real datasets.
Beschreibung:Online verfügbar 1 July 2025, Version des Artikels 8 July 2025
Gesehen am 14.11.2025
Beschreibung:Online Resource
DOI:10.1016/j.csda.2025.108237