Computing the distance between unbalanced distributions: the flat metric

We provide an implementation to compute the flat metric in any dimension. The flat metric, also called dual bounded Lipschitz distance, generalizes the well-known Wasserstein distance $$W_1$$to the case that the distributions are of unequal total mass. Thus, our implementation adapts very well to ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Schmidt, Henri (Author) , Düll, Christian (Author)
Format: Article (Journal)
Language:English
Published: 24 July 2025
In: Machine learning
Year: 2025, Volume: 114, Issue: 8, Pages: 1-34
ISSN:1573-0565
DOI:10.1007/s10994-025-06828-8
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10994-025-06828-8
Get full text
Author Notes:Henri Schmidt, Christian Düll

MARC

LEADER 00000naa a2200000 c 4500
001 1941381170
003 DE-627
005 20251117102215.0
007 cr uuu---uuuuu
008 251117s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10994-025-06828-8  |2 doi 
035 |a (DE-627)1941381170 
035 |a (DE-599)KXP1941381170 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Schmidt, Henri  |e VerfasserIn  |0 (DE-588)1381766609  |0 (DE-627)1941384102  |4 aut 
245 1 0 |a Computing the distance between unbalanced distributions  |b the flat metric  |c Henri Schmidt, Christian Düll 
264 1 |c 24 July 2025 
300 |b Illustrationen 
300 |a 34 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 24. Juli 2025 
500 |a Gesehen am 17.11.2025 
520 |a We provide an implementation to compute the flat metric in any dimension. The flat metric, also called dual bounded Lipschitz distance, generalizes the well-known Wasserstein distance $$W_1$$to the case that the distributions are of unequal total mass. Thus, our implementation adapts very well to mass differences and uses them to distinguish between different distributions. This is of particular interest for unbalanced optimal transport tasks and for the analysis of data distributions where the sample size is important or normalization is not possible. The core of the method is based on a neural network to determine an optimal test function realizing the distance between two given measures. Special focus was put on achieving comparability of pairwise computed distances from independently trained networks. We tested the quality of the output in several experiments where ground truth was available as well as with simulated data. 
650 4 |a Dual bounded Lipschitz distance 
650 4 |a Flat norm 
650 4 |a Fortet-Mourier distance 
650 4 |a Unbalanced optimal transport 
700 1 |a Düll, Christian  |d 1994-  |e VerfasserIn  |0 (DE-588)1180545761  |0 (DE-627)1067773789  |0 (DE-576)520273095  |4 aut 
773 0 8 |i Enthalten in  |t Machine learning  |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986  |g 114(2025), 8, Artikel-ID 195, Seite 1-34  |h Online-Ressource  |w (DE-627)269539174  |w (DE-600)1475529-4  |w (DE-576)095551743  |x 1573-0565  |7 nnas  |a Computing the distance between unbalanced distributions the flat metric 
773 1 8 |g volume:114  |g year:2025  |g number:8  |g elocationid:195  |g pages:1-34  |g extent:34  |a Computing the distance between unbalanced distributions the flat metric 
856 4 0 |u https://doi.org/10.1007/s10994-025-06828-8  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251117 
993 |a Article 
994 |a 2025 
998 |g 1180545761  |a Düll, Christian  |m 1180545761:Düll, Christian  |d 110000  |d 110400  |e 110000PD1180545761  |e 110400PD1180545761  |k 0/110000/  |k 1/110000/110400/  |p 2  |y j 
999 |a KXP-PPN1941381170  |e 4807835815 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Henri Schmidt, Christian Düll"]},"id":{"eki":["1941381170"],"doi":["10.1007/s10994-025-06828-8"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"24 July 2025"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1573-0565"],"zdb":["1475529-4"],"eki":["269539174"]},"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V ; Kluwer","dateIssuedKey":"1986","publisherPlace":"Dordrecht [u.a.] ; Dordrecht [u.a.]"}],"part":{"year":"2025","pages":"1-34","issue":"8","text":"114(2025), 8, Artikel-ID 195, Seite 1-34","volume":"114","extent":"34"},"pubHistory":["1.1986 -"],"recId":"269539174","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 11.03.05"],"disp":"Computing the distance between unbalanced distributions the flat metricMachine learning","title":[{"title":"Machine learning","title_sort":"Machine learning"}]}],"physDesc":[{"noteIll":"Illustrationen","extent":"34 S."}],"person":[{"roleDisplay":"VerfasserIn","display":"Schmidt, Henri","role":"aut","family":"Schmidt","given":"Henri"},{"roleDisplay":"VerfasserIn","display":"Düll, Christian","role":"aut","family":"Düll","given":"Christian"}],"title":[{"subtitle":"the flat metric","title":"Computing the distance between unbalanced distributions","title_sort":"Computing the distance between unbalanced distributions"}],"recId":"1941381170","language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Veröffentlicht: 24. Juli 2025","Gesehen am 17.11.2025"]} 
SRT |a SCHMIDTHENCOMPUTINGT2420