Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients

Objective. Fast and accurate organ-at-risk (OAR) and gross tumor volume (GTV) contour propagation methods are needed to improve the efficiency of magnetic resonance (MR) imaging-guided radiotherapy. We trained deformable image registration networks to accurately propagate contours from planning to f...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei, Chengtao (Author) , Eze, Chukwuka (Author) , Klaar, Rabea (Author) , Thorwarth, Daniela (Author) , Warda, Cora (Author) , Taugner, Julian (Author) , Hörner-Rieber, Juliane (Author) , Regnery, Sebastian (Author) , Jäkel, Oliver (Author) , Weykamp, Fabian (Author) , Palacios, Miguel (Author) , Marschner, Sebastian N (Author) , Corradini, Stefanie (Author) , Belka, Claus (Author) , Kurz, Christopher (Author) , Landry, Guillaume (Author) , Rabe, Moritz (Author)
Format: Article (Journal)
Language:English
Published: 15 July 2025
In: Physics in medicine and biology
Year: 2025, Volume: 70, Issue: 14, Pages: 1-17
ISSN:1361-6560
DOI:10.1088/1361-6560/ade8d0
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1088/1361-6560/ade8d0
Get full text
Author Notes:Chengtao Wei, Chukwuka Eze, Rabea Klaar, Daniela Thorwarth, Cora Warda, Julian Taugner, Juliane Hörner-Rieber, Sebastian Regnery, Oliver Jäkel, Fabian Weykamp, Miguel Palacios, Sebastian N Marschner, Stefanie Corradini, Claus Belka, Christopher Kurz, Guillaume Landry and Moritz Rabe

MARC

LEADER 00000naa a2200000 c 4500
001 1942571933
003 DE-627
005 20251126101456.0
007 cr uuu---uuuuu
008 251126s2025 xx |||||o 00| ||eng c
024 7 |a 10.1088/1361-6560/ade8d0  |2 doi 
035 |a (DE-627)1942571933 
035 |a (DE-599)KXP1942571933 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wei, Chengtao  |e VerfasserIn  |0 (DE-588)1382674813  |0 (DE-627)1942572409  |4 aut 
245 1 0 |a Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients  |c Chengtao Wei, Chukwuka Eze, Rabea Klaar, Daniela Thorwarth, Cora Warda, Julian Taugner, Juliane Hörner-Rieber, Sebastian Regnery, Oliver Jäkel, Fabian Weykamp, Miguel Palacios, Sebastian N Marschner, Stefanie Corradini, Claus Belka, Christopher Kurz, Guillaume Landry and Moritz Rabe 
264 1 |c 15 July 2025 
300 |b Illustrationen 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 15. Juli 2025 
500 |a Gesehen am 26.11.2025 
520 |a Objective. Fast and accurate organ-at-risk (OAR) and gross tumor volume (GTV) contour propagation methods are needed to improve the efficiency of magnetic resonance (MR) imaging-guided radiotherapy. We trained deformable image registration networks to accurately propagate contours from planning to fraction MR images. Approach. Data from 140 stage 1-2 lung cancer patients treated at a 0.35 T MR-Linac were split into 102/17/21 for training/validation/testing. Additionally, 18 central lung tumor patients, treated at a 0.35 T MR-Linac externally, and 14 stage 3 lung cancer patients from a phase 1 clinical trial, treated at 0.35 T or 1.5 T MR-Linacs at three institutions, were used for external testing. Planning and fraction images were paired (490 pairs) for training. Two hybrid transformer-convolutional neural network TransMorph models with mean squared error (MSE), Dice similarity coefficient (DSC), and regularization losses (TMMSE+Dice) or MSE and regularization losses (TMMSE) were trained to deformably register planning to fraction images. The TransMorph models predicted diffeomorphic dense displacement fields. Multi-label images including seven thoracic OARs and the GTV were propagated to generate fraction segmentations. Model predictions were compared with contours obtained through B-spline, vendor registration and the auto-segmentation method nnUNet. Evaluation metrics included the DSC and Hausdorff distance percentiles (50th and 95th) against clinical contours. Main results. TMMSE+Dice and TMMSE achieved mean OARs/GTV DSCs of 0.90/0.82 and 0.90/0.79 for the internal and 0.84/0.77 and 0.85/0.76 for the central lung tumor external test data. On stage 3 data, TMMSE+Dice achieved mean OARs/GTV DSCs of 0.87/0.79 and 0.83/0.78 for the 0.35 T MR-Linac datasets, and 0.87/0.75 for the 1.5 T MR-Linac dataset. TMMSE+Dice and TMMSE had significantly higher geometric accuracy than other methods on external data. No significant difference between TMMSE+Dice and TMMSE was found. Significance. TransMorph models achieved time-efficient segmentation of fraction MRIs with high geometrical accuracy and accurately segmented images obtained at different field strengths. 
700 1 |a Eze, Chukwuka  |e VerfasserIn  |4 aut 
700 1 |a Klaar, Rabea  |e VerfasserIn  |4 aut 
700 1 |a Thorwarth, Daniela  |e VerfasserIn  |4 aut 
700 1 |a Warda, Cora  |e VerfasserIn  |4 aut 
700 1 |a Taugner, Julian  |e VerfasserIn  |4 aut 
700 1 |a Hörner-Rieber, Juliane  |d 1985-  |e VerfasserIn  |0 (DE-588)1025307631  |0 (DE-627)722020511  |0 (DE-576)370188039  |4 aut 
700 1 |a Regnery, Sebastian  |e VerfasserIn  |0 (DE-588)1182554776  |0 (DE-627)1662804199  |4 aut 
700 1 |a Jäkel, Oliver  |d 1964-  |e VerfasserIn  |0 (DE-588)1050056302  |0 (DE-627)783260709  |0 (DE-576)404358705  |4 aut 
700 1 |a Weykamp, Fabian  |d 1987-  |e VerfasserIn  |0 (DE-588)1072433036  |0 (DE-627)827655096  |0 (DE-576)43385992X  |4 aut 
700 1 |a Palacios, Miguel  |e VerfasserIn  |4 aut 
700 1 |a Marschner, Sebastian N  |e VerfasserIn  |4 aut 
700 1 |a Corradini, Stefanie  |e VerfasserIn  |4 aut 
700 1 |a Belka, Claus  |e VerfasserIn  |4 aut 
700 1 |a Kurz, Christopher  |e VerfasserIn  |4 aut 
700 1 |a Landry, Guillaume  |e VerfasserIn  |4 aut 
700 1 |a Rabe, Moritz  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Physics in medicine and biology  |d Bristol : IOP Publ., 1956  |g 70(2025), 14, Artikel-ID 145018, Seite 1-17  |h Online-Ressource  |w (DE-627)269016163  |w (DE-600)1473501-5  |w (DE-576)088704130  |x 1361-6560  |7 nnas  |a Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients 
773 1 8 |g volume:70  |g year:2025  |g number:14  |g elocationid:145018  |g pages:1-17  |g extent:17  |a Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients 
856 4 0 |u https://doi.org/10.1088/1361-6560/ade8d0  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251126 
993 |a Article 
994 |a 2025 
998 |g 1072433036  |a Weykamp, Fabian  |m 1072433036:Weykamp, Fabian  |d 910000  |d 911400  |d 50000  |e 910000PW1072433036  |e 911400PW1072433036  |e 50000PW1072433036  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 10 
998 |g 1050056302  |a Jäkel, Oliver  |m 1050056302:Jäkel, Oliver  |p 9 
998 |g 1182554776  |a Regnery, Sebastian  |m 1182554776:Regnery, Sebastian  |d 910000  |d 911400  |e 910000PR1182554776  |e 911400PR1182554776  |k 0/910000/  |k 1/910000/911400/  |p 8 
998 |g 1025307631  |a Hörner-Rieber, Juliane  |m 1025307631:Hörner-Rieber, Juliane  |d 50000  |e 50000PH1025307631  |k 0/50000/  |p 7 
999 |a KXP-PPN1942571933  |e 481408269X 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"15 July 2025","dateIssuedKey":"2025"}],"person":[{"family":"Wei","role":"aut","given":"Chengtao","display":"Wei, Chengtao"},{"display":"Eze, Chukwuka","family":"Eze","given":"Chukwuka","role":"aut"},{"given":"Rabea","role":"aut","family":"Klaar","display":"Klaar, Rabea"},{"display":"Thorwarth, Daniela","given":"Daniela","role":"aut","family":"Thorwarth"},{"display":"Warda, Cora","family":"Warda","role":"aut","given":"Cora"},{"given":"Julian","role":"aut","family":"Taugner","display":"Taugner, Julian"},{"family":"Hörner-Rieber","given":"Juliane","role":"aut","display":"Hörner-Rieber, Juliane"},{"display":"Regnery, Sebastian","family":"Regnery","role":"aut","given":"Sebastian"},{"display":"Jäkel, Oliver","role":"aut","given":"Oliver","family":"Jäkel"},{"display":"Weykamp, Fabian","family":"Weykamp","role":"aut","given":"Fabian"},{"display":"Palacios, Miguel","role":"aut","given":"Miguel","family":"Palacios"},{"display":"Marschner, Sebastian N","family":"Marschner","given":"Sebastian N","role":"aut"},{"family":"Corradini","given":"Stefanie","role":"aut","display":"Corradini, Stefanie"},{"family":"Belka","given":"Claus","role":"aut","display":"Belka, Claus"},{"given":"Christopher","role":"aut","family":"Kurz","display":"Kurz, Christopher"},{"given":"Guillaume","role":"aut","family":"Landry","display":"Landry, Guillaume"},{"display":"Rabe, Moritz","family":"Rabe","given":"Moritz","role":"aut"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"recId":"269016163","disp":"Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patientsPhysics in medicine and biology","origin":[{"dateIssuedKey":"1956","dateIssuedDisp":"1956-","publisherPlace":"Bristol","publisher":"IOP Publ."}],"pubHistory":["1.1956 -"],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 28.01.2019","Fortsetzung der Druck-Ausgabe"],"id":{"eki":["269016163"],"issn":["1361-6560"],"zdb":["1473501-5"]},"title":[{"subtitle":"an official journal of the Institute of Physics and Engineering in Medicine","title":"Physics in medicine and biology","title_sort":"Physics in medicine and biology"}],"part":{"year":"2025","volume":"70","pages":"1-17","text":"70(2025), 14, Artikel-ID 145018, Seite 1-17","extent":"17","issue":"14"}}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"note":["Veröffentlicht: 15. Juli 2025","Gesehen am 26.11.2025"],"title":[{"title_sort":"Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients","title":"Deep learning-based contour propagation in magnetic resonance imaging-guided radiotherapy of lung cancer patients"}],"physDesc":[{"noteIll":"Illustrationen","extent":"17 S."}],"recId":"1942571933","name":{"displayForm":["Chengtao Wei, Chukwuka Eze, Rabea Klaar, Daniela Thorwarth, Cora Warda, Julian Taugner, Juliane Hörner-Rieber, Sebastian Regnery, Oliver Jäkel, Fabian Weykamp, Miguel Palacios, Sebastian N Marschner, Stefanie Corradini, Claus Belka, Christopher Kurz, Guillaume Landry and Moritz Rabe"]},"id":{"eki":["1942571933"],"doi":["10.1088/1361-6560/ade8d0"]}} 
SRT |a WEICHENGTADEEPLEARNI1520