Unifying multi-sample network inference from prior knowledge and omics data with CORNETO

Understanding biological systems requires methods that extract interpretable insights from omics data. Networks offer a natural abstraction by representing molecules as vertices and their interactions as edges, providing a foundation for constructing context-specific models tailored to particular co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rodriguez Mier, Pablo (VerfasserIn) , Garrido-Rodriguez, Martin (VerfasserIn) , Gabor, Attila (VerfasserIn) , Sáez Rodríguez, Julio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 2025
In: Nature machine intelligence
Year: 2025, Jahrgang: 7, Heft: 7, Pages: 1168-1186
ISSN:2522-5839
DOI:10.1038/s42256-025-01069-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s42256-025-01069-9
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s42256-025-01069-9
Volltext
Verfasserangaben:Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez

MARC

LEADER 00000naa a2200000 c 4500
001 1942779429
003 DE-627
005 20251128124920.0
007 cr uuu---uuuuu
008 251128s2025 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-025-01069-9  |2 doi 
035 |a (DE-627)1942779429 
035 |a (DE-599)KXP1942779429 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Rodriguez Mier, Pablo  |e VerfasserIn  |0 (DE-588)1344161936  |0 (DE-627)1904925367  |4 aut 
245 1 0 |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO  |c Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez 
264 1 |c July 2025 
300 |b Illustrationen 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 22. Juli 2025 
500 |a Gesehen am 28.11.2025 
520 |a Understanding biological systems requires methods that extract interpretable insights from omics data. Networks offer a natural abstraction by representing molecules as vertices and their interactions as edges, providing a foundation for constructing context-specific models tailored to particular conditions—an essential step in many biological analyses. Most existing approaches fall into one of two categories: machine learning methods, which offer strong predictive power but lack interpretability and require large datasets, and knowledge-based methods, which are more interpretable but designed for analysing individual samples and difficult to generalize. Here we present CORNETO, a unified mathematical framework that generalizes a wide variety of methods that learn biological networks from omics data and prior knowledge. CORNETO reformulates these methods as mixed-integer optimization problems using network flows and structured sparsity, enabling joint inference across multiple samples. This improves the discovery of both shared and sample-specific molecular mechanisms while yielding sparser, more interpretable solutions. CORNETO supports a range of prior knowledge structures, including undirected, directed and signed (hyper)graphs. It extends a broad class of approaches, ranging from Steiner trees to flux balance analysis, within a unified optimization-based interface. We demonstrate CORNETO’s utility across diverse biological contexts, including signalling, metabolism and integration with biologically informed deep learning. We provide CORNETO as an open-source Python library for flexible network modelling. 
650 4 |a Biochemical reaction networks 
650 4 |a Cellular signalling networks 
650 4 |a Computational models 
650 4 |a Machine learning 
650 4 |a Software 
700 1 |a Garrido-Rodriguez, Martin  |e VerfasserIn  |0 (DE-588)1266329250  |0 (DE-627)1815172479  |4 aut 
700 1 |a Gabor, Attila  |e VerfasserIn  |0 (DE-588)1226773125  |0 (DE-627)1747798843  |4 aut 
700 1 |a Sáez Rodríguez, Julio  |d 1978-  |e VerfasserIn  |0 (DE-588)133764362  |0 (DE-627)555766632  |0 (DE-576)300083114  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 7(2025), 7, Seite 1168-1186  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO 
773 1 8 |g volume:7  |g year:2025  |g number:7  |g pages:1168-1186  |g extent:19  |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO 
856 4 0 |u https://doi.org/10.1038/s42256-025-01069-9  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s42256-025-01069-9  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251128 
993 |a Article 
994 |a 2025 
998 |g 133764362  |a Sáez Rodríguez, Julio  |m 133764362:Sáez Rodríguez, Julio  |d 910000  |d 912900  |e 910000PS133764362  |e 912900PS133764362  |k 0/910000/  |k 1/910000/912900/  |p 4  |y j 
998 |g 1226773125  |a Gabor, Attila  |m 1226773125:Gabor, Attila  |p 3 
998 |g 1266329250  |a Garrido-Rodriguez, Martin  |m 1266329250:Garrido-Rodriguez, Martin  |d 700000  |d 716000  |e 700000PG1266329250  |e 716000PG1266329250  |k 0/700000/  |k 1/700000/716000/  |p 2 
998 |g 1344161936  |a Rodriguez Mier, Pablo  |m 1344161936:Rodriguez Mier, Pablo  |d 910000  |d 912900  |e 910000PR1344161936  |e 912900PR1344161936  |k 0/910000/  |k 1/910000/912900/  |p 1  |x j 
999 |a KXP-PPN1942779429  |e 4815635285 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"language":["eng"],"part":{"extent":"19","volume":"7","year":"2025","pages":"1168-1186","text":"7(2025), 7, Seite 1168-1186","issue":"7"},"note":["Gesehen am 30.04.25"],"origin":[{"publisherPlace":"[London]","dateIssuedDisp":"[2019]-","publisher":"Springer Nature Publishing"}],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"title":[{"title":"Nature machine intelligence","title_sort":"Nature machine intelligence"}],"disp":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETONature machine intelligence","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1025147669","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2933875-X"],"issn":["2522-5839"],"eki":["1025147669"]}}],"recId":"1942779429","name":{"displayForm":["Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez"]},"physDesc":[{"extent":"19 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1038/s42256-025-01069-9"],"eki":["1942779429"]},"note":["Online verfügbar: 22. Juli 2025","Gesehen am 28.11.2025"],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"July 2025"}],"title":[{"title_sort":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETO","title":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETO"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"family":"Rodriguez Mier","display":"Rodriguez Mier, Pablo","role":"aut","given":"Pablo"},{"display":"Garrido-Rodriguez, Martin","family":"Garrido-Rodriguez","role":"aut","given":"Martin"},{"display":"Gabor, Attila","family":"Gabor","given":"Attila","role":"aut"},{"display":"Sáez Rodríguez, Julio","family":"Sáez Rodríguez","role":"aut","given":"Julio"}]} 
SRT |a RODRIGUEZMUNIFYINGMU2025