Unifying multi-sample network inference from prior knowledge and omics data with CORNETO
Understanding biological systems requires methods that extract interpretable insights from omics data. Networks offer a natural abstraction by representing molecules as vertices and their interactions as edges, providing a foundation for constructing context-specific models tailored to particular co...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
July 2025
|
| In: |
Nature machine intelligence
Year: 2025, Jahrgang: 7, Heft: 7, Pages: 1168-1186 |
| ISSN: | 2522-5839 |
| DOI: | 10.1038/s42256-025-01069-9 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s42256-025-01069-9 Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s42256-025-01069-9 |
| Verfasserangaben: | Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1942779429 | ||
| 003 | DE-627 | ||
| 005 | 20251128124920.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 251128s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1038/s42256-025-01069-9 |2 doi | |
| 035 | |a (DE-627)1942779429 | ||
| 035 | |a (DE-599)KXP1942779429 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 32 |2 sdnb | ||
| 100 | 1 | |a Rodriguez Mier, Pablo |e VerfasserIn |0 (DE-588)1344161936 |0 (DE-627)1904925367 |4 aut | |
| 245 | 1 | 0 | |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO |c Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez |
| 264 | 1 | |c July 2025 | |
| 300 | |b Illustrationen | ||
| 300 | |a 19 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online verfügbar: 22. Juli 2025 | ||
| 500 | |a Gesehen am 28.11.2025 | ||
| 520 | |a Understanding biological systems requires methods that extract interpretable insights from omics data. Networks offer a natural abstraction by representing molecules as vertices and their interactions as edges, providing a foundation for constructing context-specific models tailored to particular conditions—an essential step in many biological analyses. Most existing approaches fall into one of two categories: machine learning methods, which offer strong predictive power but lack interpretability and require large datasets, and knowledge-based methods, which are more interpretable but designed for analysing individual samples and difficult to generalize. Here we present CORNETO, a unified mathematical framework that generalizes a wide variety of methods that learn biological networks from omics data and prior knowledge. CORNETO reformulates these methods as mixed-integer optimization problems using network flows and structured sparsity, enabling joint inference across multiple samples. This improves the discovery of both shared and sample-specific molecular mechanisms while yielding sparser, more interpretable solutions. CORNETO supports a range of prior knowledge structures, including undirected, directed and signed (hyper)graphs. It extends a broad class of approaches, ranging from Steiner trees to flux balance analysis, within a unified optimization-based interface. We demonstrate CORNETO’s utility across diverse biological contexts, including signalling, metabolism and integration with biologically informed deep learning. We provide CORNETO as an open-source Python library for flexible network modelling. | ||
| 650 | 4 | |a Biochemical reaction networks | |
| 650 | 4 | |a Cellular signalling networks | |
| 650 | 4 | |a Computational models | |
| 650 | 4 | |a Machine learning | |
| 650 | 4 | |a Software | |
| 700 | 1 | |a Garrido-Rodriguez, Martin |e VerfasserIn |0 (DE-588)1266329250 |0 (DE-627)1815172479 |4 aut | |
| 700 | 1 | |a Gabor, Attila |e VerfasserIn |0 (DE-588)1226773125 |0 (DE-627)1747798843 |4 aut | |
| 700 | 1 | |a Sáez Rodríguez, Julio |d 1978- |e VerfasserIn |0 (DE-588)133764362 |0 (DE-627)555766632 |0 (DE-576)300083114 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Nature machine intelligence |d [London] : Springer Nature Publishing, 2019 |g 7(2025), 7, Seite 1168-1186 |h Online-Ressource |w (DE-627)1025147669 |w (DE-600)2933875-X |w (DE-576)506804771 |x 2522-5839 |7 nnas |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO |
| 773 | 1 | 8 | |g volume:7 |g year:2025 |g number:7 |g pages:1168-1186 |g extent:19 |a Unifying multi-sample network inference from prior knowledge and omics data with CORNETO |
| 856 | 4 | 0 | |u https://doi.org/10.1038/s42256-025-01069-9 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u https://www.nature.com/articles/s42256-025-01069-9 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20251128 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 133764362 |a Sáez Rodríguez, Julio |m 133764362:Sáez Rodríguez, Julio |d 910000 |d 912900 |e 910000PS133764362 |e 912900PS133764362 |k 0/910000/ |k 1/910000/912900/ |p 4 |y j | ||
| 998 | |g 1226773125 |a Gabor, Attila |m 1226773125:Gabor, Attila |p 3 | ||
| 998 | |g 1266329250 |a Garrido-Rodriguez, Martin |m 1266329250:Garrido-Rodriguez, Martin |d 700000 |d 716000 |e 700000PG1266329250 |e 716000PG1266329250 |k 0/700000/ |k 1/700000/716000/ |p 2 | ||
| 998 | |g 1344161936 |a Rodriguez Mier, Pablo |m 1344161936:Rodriguez Mier, Pablo |d 910000 |d 912900 |e 910000PR1344161936 |e 912900PR1344161936 |k 0/910000/ |k 1/910000/912900/ |p 1 |x j | ||
| 999 | |a KXP-PPN1942779429 |e 4815635285 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"language":["eng"],"part":{"extent":"19","volume":"7","year":"2025","pages":"1168-1186","text":"7(2025), 7, Seite 1168-1186","issue":"7"},"note":["Gesehen am 30.04.25"],"origin":[{"publisherPlace":"[London]","dateIssuedDisp":"[2019]-","publisher":"Springer Nature Publishing"}],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"title":[{"title":"Nature machine intelligence","title_sort":"Nature machine intelligence"}],"disp":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETONature machine intelligence","type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1025147669","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2933875-X"],"issn":["2522-5839"],"eki":["1025147669"]}}],"recId":"1942779429","name":{"displayForm":["Pablo Rodriguez-Mier, Martin Garrido-Rodriguez, Attila Gabor & Julio Saez-Rodriguez"]},"physDesc":[{"extent":"19 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1038/s42256-025-01069-9"],"eki":["1942779429"]},"note":["Online verfügbar: 22. Juli 2025","Gesehen am 28.11.2025"],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"July 2025"}],"title":[{"title_sort":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETO","title":"Unifying multi-sample network inference from prior knowledge and omics data with CORNETO"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"family":"Rodriguez Mier","display":"Rodriguez Mier, Pablo","role":"aut","given":"Pablo"},{"display":"Garrido-Rodriguez, Martin","family":"Garrido-Rodriguez","role":"aut","given":"Martin"},{"display":"Gabor, Attila","family":"Gabor","given":"Attila","role":"aut"},{"display":"Sáez Rodríguez, Julio","family":"Sáez Rodríguez","role":"aut","given":"Julio"}]} | ||
| SRT | |a RODRIGUEZMUNIFYINGMU2025 | ||