Observer-based volumetric flow control in nonlinear electro-pneumatic extrusion actuator with rheological dynamics

Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin-Voigt model that integr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chancharoen, Ratchatin (VerfasserIn) , Sithiwichankit, Chaiwuth (VerfasserIn) , Chaiprabha, Kantawatchr (VerfasserIn) , Suthithanakom, Setthibhak (VerfasserIn) , Phanomchoeng, Gridsada (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 14 October 2025
In: Actuators
Year: 2025, Jahrgang: 14, Heft: 10, Pages: 1-20
ISSN:2076-0825
DOI:10.3390/act14100496
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.3390/act14100496
Verlag, kostenfrei, Volltext: https://www.mdpi.com/2076-0825/14/10/496
Volltext
Verfasserangaben:Ratchatin Chancharoen, Chaiwuth Sithiwichankit, Kantawatchr Chaiprabha, Setthibhak Suthithanakom and Gridsada Phanomchoeng
Beschreibung
Zusammenfassung:Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin-Voigt model that integrates nonlinear dynamic modeling, an unknown input observer (UIO), and a closed-loop PID controller to regulate material flow in a motorized electro-pneumatic extrusion system. A comprehensive state-space model is developed, capturing both mechanical and rheological dynamics. The UIO estimates unmeasurable internal states - specifically, syringe plunger velocity - which are critical for real-time flow regulation. Simulation results validate the observer’s accuracy, while experimental trials with a curing silicone resin confirm that the system can achieve steady extrusion and maintain stable linewidth once transient disturbances settle. The proposed system leverages a dual-mode actuation mechanism - combining pneumatic buffering and motor-based adjustment - to achieve responsive and robust control. This architecture offers a compact, sensorless solution well-suited for high-precision applications in bioprinting, electronics, and soft robotics, and provides a foundation for intelligent flow regulation under dynamic material behaviors.
Beschreibung:Veröffentlicht: 14. Oktober 2025
Gesehen am 03.12.2025
Beschreibung:Online Resource
ISSN:2076-0825
DOI:10.3390/act14100496