Deep-learning-based gene perturbation effect prediction does not yet outperform simple linear baselines

Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahlmann-Eltze, Constantin (VerfasserIn) , Huber, Wolfgang (VerfasserIn) , Anders, Simon (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 4 August 2025
In: Nature methods
Year: 2025, Jahrgang: 22, Heft: 8, Pages: 1657-1661
ISSN:1548-7105
DOI:10.1038/s41592-025-02772-6
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41592-025-02772-6
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41592-025-02772-6
Volltext
Verfasserangaben:Constantin Ahlmann-Eltze, Wolfgang Huber, and Simon Anders
Beschreibung
Zusammenfassung:Recent research in deep-learning-based foundation models promises to learn representations of single-cell data that enable prediction of the effects of genetic perturbations. Here we compared five foundation models and two other deep learning models against deliberately simple baselines for predicting transcriptome changes after single or double perturbations. None outperformed the baselines, which highlights the importance of critical benchmarking in directing and evaluating method development.
Beschreibung:Gesehen am 03.12.2025
Beschreibung:Online Resource
ISSN:1548-7105
DOI:10.1038/s41592-025-02772-6