Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach

We consider optimal experimental design (OED) for nonlinear inverse problems within the Bayesian framework. Optimizing the data acquisition process for large-scale nonlinear Bayesian inverse problems is a computationally challenging task since the posterior is typically intractable and commonly-enco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koval, Karina (VerfasserIn) , Nicholson, Ruanui (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 August 2025
In: Journal of scientific computing
Year: 2025, Jahrgang: 104, Heft: 3, Pages: 1-28
ISSN:1573-7691
DOI:10.1007/s10915-025-03008-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s10915-025-03008-7
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/s10915-025-03008-7
Volltext
Verfasserangaben:Karina Koval, Ruanui Nicholson

MARC

LEADER 00000naa a2200000 c 4500
001 194375215X
003 DE-627
005 20251203113619.0
007 cr uuu---uuuuu
008 251203s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10915-025-03008-7  |2 doi 
035 |a (DE-627)194375215X 
035 |a (DE-599)KXP194375215X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 28  |2 sdnb 
100 1 |a Koval, Karina  |e VerfasserIn  |0 (DE-588)1360816879  |0 (DE-627)1920241647  |4 aut 
245 1 0 |a Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach  |c Karina Koval, Ruanui Nicholson 
264 1 |c 1 August 2025 
300 |b Illustrationen 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.12.2025 
520 |a We consider optimal experimental design (OED) for nonlinear inverse problems within the Bayesian framework. Optimizing the data acquisition process for large-scale nonlinear Bayesian inverse problems is a computationally challenging task since the posterior is typically intractable and commonly-encountered optimality criteria depend on the observed data. Since these challenges are not present in OED for linear Bayesian inverse problems, we propose an approach based on first linearizing the associated forward problem and then optimizing the experimental design. Replacing an accurate but costly model with some linear surrogate, while justified for certain problems, can lead to incorrect posteriors and sub-optimal designs if model discrepancy is ignored. To avoid this, we use the Bayesian approximation error (BAE) approach to formulate an A-optimal design objective for sensor selection that is aware of the model error. In line with recent developments, we prove that this uncertainty-aware objective is independent of the exact choice of linearization. This key observation facilitates the formulation of an uncertainty-aware OED objective function using a completely trivial linear map, the zero map, as a surrogate to the forward dynamics. The result is also extended to marginalized OED problems, accommodating uncertainties arising from both linear approximations and unknown auxiliary parameters. Our approach only requires parameter and data sample pairs, hence it is particularly well-suited for black box forward models. We demonstrate the effectiveness of our method for finding optimal designs in an idealized subsurface flow inverse problem and for tsunami detection. 
650 4 |a 62-08 
650 4 |a 62E17 
650 4 |a 62F15 
650 4 |a 65K05 
650 4 |a Bayesian approximation error 
650 4 |a Bayesian inverse problems 
650 4 |a Linearization 
650 4 |a Optimal experimental design 
700 1 |a Nicholson, Ruanui  |e VerfasserIn  |0 (DE-588)1383284792  |0 (DE-627)1943752729  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 104(2025), 3 vom: Sept., Artikel-ID 98, Seite 1-28  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach 
773 1 8 |g volume:104  |g year:2025  |g number:3  |g month:09  |g elocationid:98  |g pages:1-28  |g extent:28  |a Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach 
856 4 0 |u https://doi.org/10.1007/s10915-025-03008-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s10915-025-03008-7  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20251203 
993 |a Article 
994 |a 2025 
998 |g 1360816879  |a Koval, Karina  |m 1360816879:Koval, Karina  |d 700000  |d 708000  |e 700000PK1360816879  |e 708000PK1360816879  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN194375215X  |e 4819891707 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"28 S.","noteIll":"Illustrationen"}],"relHost":[{"origin":[{"dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedKey":"1986","publisherPlace":"New York, NY [u.a.] ; London [u.a.]"}],"id":{"issn":["1573-7691"],"eki":["317878395"],"zdb":["2017260-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Journal of scientific computing","title":"Journal of scientific computing"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 01.11.05"],"disp":"Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approachJournal of scientific computing","language":["eng"],"recId":"317878395","pubHistory":["1.1986 -"],"part":{"text":"104(2025), 3 vom: Sept., Artikel-ID 98, Seite 1-28","volume":"104","extent":"28","year":"2025","issue":"3","pages":"1-28"}}],"name":{"displayForm":["Karina Koval, Ruanui Nicholson"]},"origin":[{"dateIssuedDisp":"1 August 2025","dateIssuedKey":"2025"}],"id":{"eki":["194375215X"],"doi":["10.1007/s10915-025-03008-7"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 03.12.2025"],"recId":"194375215X","language":["eng"],"person":[{"role":"aut","display":"Koval, Karina","roleDisplay":"VerfasserIn","given":"Karina","family":"Koval"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Nicholson, Ruanui","given":"Ruanui","family":"Nicholson"}],"title":[{"title_sort":"Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach","title":"Non-intrusive optimal experimental design for large-scale nonlinear Bayesian inverse problems using a Bayesian approximation error approach"}]} 
SRT |a KOVALKARINNONINTRUSI1202