Well-posedness and regularity of the heat equation with Robin boundary conditions in the two-dimensional wedge

Well-posedness and higher regularity of the heat equation with Robin boundary conditions in an unbounded two-dimensional wedge are established in an L2-setting of monomially weighted spaces. A mathematical framework is developed that allows us to obtain arbitrarily high regularity without a smallnes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bravin, Marco (VerfasserIn) , Gnann, Manuel V. (VerfasserIn) , Knüpfer, Hans (VerfasserIn) , Masmoudi, Nader (VerfasserIn) , Roodenburg, Floris B. (VerfasserIn) , Sauer, Jonas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 04 August 2025
In: Communications in partial differential equations
Year: 2025, Jahrgang: 50, Heft: 9, Pages: 1099-1134
ISSN:1532-4133
DOI:10.1080/03605302.2025.2534368
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1080/03605302.2025.2534368
Verlag, kostenfrei, Volltext: https://www.tandfonline.com/doi/full/10.1080/03605302.2025.2534368
Volltext
Verfasserangaben:Marco Bravin, Manuel V. Gnann, Hans Knüpfer, Nader Masmoudi, Floris B. Roodenburg, and Jonas Sauer
Beschreibung
Zusammenfassung:Well-posedness and higher regularity of the heat equation with Robin boundary conditions in an unbounded two-dimensional wedge are established in an L2-setting of monomially weighted spaces. A mathematical framework is developed that allows us to obtain arbitrarily high regularity without a smallness assumption on the opening angle of the wedge. The challenging aspect is that the resolvent problem exhibits two breakings of the scaling invariance, one in the equation and one in the boundary condition.
Beschreibung:Gesehen am 08.12.2025
Beschreibung:Online Resource
ISSN:1532-4133
DOI:10.1080/03605302.2025.2534368