Massively parallel microbubble nano-assembly

Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joh, Hyungmok (VerfasserIn) , Lian, Bin (VerfasserIn) , Hsueh, Shaw-iong (VerfasserIn) , Ma, Zhichao (VerfasserIn) , Lee, Keng-Jung (VerfasserIn) , Zheng, Si-Yang (VerfasserIn) , Fischer, Peer (VerfasserIn) , Fan, Donglei Emma (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 July 2025
In: Nature Communications
Year: 2025, Jahrgang: 16, Pages: 1-11
ISSN:2041-1723
DOI:10.1038/s41467-025-62070-9
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1038/s41467-025-62070-9
Verlag, kostenfrei, Volltext: https://www.nature.com/articles/s41467-025-62070-9
Volltext
Verfasserangaben:Hyungmok Joh, Bin Lian, Shaw-iong Hsueh, Zhichao Ma, Keng-Jung Lee, Si-Yang Zheng, Peer Fischer & Donglei Emma Fan
Beschreibung
Zusammenfassung:Microbubbles are an important tool due to their unique mechanical, acoustic, and dynamical properties. Yet, it remains challenging to generate microbubbles quickly in a parallel, biocompatible, and controlled manner. Here, we present an opto-electrochemical method that combines precise light-based projection with low-energy electrolysis, realizing defined microbubble patterns that in turn trigger assembly processes. The size of the bubbles can be controlled from a few to over hundred micrometers with a spatial accuracy of ~2 μm. The minimum required light intensity is only ~0.1 W/cm2, several orders of magnitude lower compared to other light-enabled methods. We demonstrate the assembly of prescribed patterns of 40-nm nanocrystals, 200 nm extracellular vesicles, polymer nanospheres, and live bacteria. We show how nanosensor-bacterial-cell arrays can be formed for spectroscopic profiling of metabolites and antibiotic response of bacterial assemblies. The combination of a photoconductor with electrochemical techniques enables low-energy, low-temperature bubble generation, advantageous for large-scale, one-shot patterning of diverse particles in a biocompatible manner. The microbubble-platform is highly versatile and promises new opportunities in nanorobotics, nanomanufacturing, high-throughput bioassays, single cell omics, bioseparation, and drug screening and discovery.
Beschreibung:Gesehen am 11.12.2025
Beschreibung:Online Resource
ISSN:2041-1723
DOI:10.1038/s41467-025-62070-9