Automated detection and classification of osteolytic lesions in panoramic radiographs using CNNs and vision transformers

Diseases underlying osteolytic lesions in jaws are characterized by the absorption of bone tissue and are often asymptomatic, delaying their diagnosis. Well-defined lesions (benign cyst-like lesions) and ill-defined lesions (osteomyelitis or malignancy) can be detected early in a panoramic radiograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nistelrooij, Niels van (VerfasserIn) , Ghanad, Iman (VerfasserIn) , Bigdeli, Amir Khosrow (VerfasserIn) , Thiem, Daniel G. E. (VerfasserIn) , von See, Constantin (VerfasserIn) , Rendenbach, Carsten (VerfasserIn) , Maistreli, Ira (VerfasserIn) , Xi, Tong (VerfasserIn) , Bergé, Stefaan (VerfasserIn) , Heiland, Max (VerfasserIn) , Vinayahalingam, Shankeeth (VerfasserIn) , Gaudin, Robert (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2025
In: BMC oral health
Year: 2025, Jahrgang: 25, Heft: 1, Pages: 1-10
ISSN:1472-6831
DOI:10.1186/s12903-025-06209-6
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s12903-025-06209-6
Volltext
Verfasserangaben:Niels van Nistelrooij, Iman Ghanad, Amir K. Bigdeli, Daniel G.E. Thiem, Constantin von See, Carsten Rendenbach, Ira Maistreli, Tong Xi, Stefaan Bergé, Max Heiland, Shankeeth Vinayahalingam and Robert Gaudin
Beschreibung
Zusammenfassung:Diseases underlying osteolytic lesions in jaws are characterized by the absorption of bone tissue and are often asymptomatic, delaying their diagnosis. Well-defined lesions (benign cyst-like lesions) and ill-defined lesions (osteomyelitis or malignancy) can be detected early in a panoramic radiograph (PR) by an experienced examiner, but most dentists lack appropriate training. To support dentists, this study aimed to develop and evaluate deep learning models for the detection of osteolytic lesions in PRs.
Beschreibung:Online erschienen: 21. Juni 2025, Artikelversion: 21. Juni 2025
Gesehen am 15.12.2025
Beschreibung:Online Resource
ISSN:1472-6831
DOI:10.1186/s12903-025-06209-6