Generative unfolding with distribution mapping

Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schrödinger Bridges and Direct Diffusion, in order to ensure that the models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Diefenbacher, Sascha (VerfasserIn) , Hütsch, Nathan (VerfasserIn) , Mikuni, Vinicius (VerfasserIn) , Nachman, Benjamin (VerfasserIn) , Palacios Schweitzer, Sofia (VerfasserIn) , Plehn, Tilman (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 2025
In: SciPost physics
Year: 2025, Jahrgang: 18, Heft: 6, Pages: 1-28
ISSN:2542-4653
DOI:10.21468/SciPostPhys.18.6.200
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.21468/SciPostPhys.18.6.200
Verlag, kostenfrei, Volltext: https://scipost.org/10.21468/SciPostPhys.18.6.200
Volltext
Verfasserangaben:Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn

MARC

LEADER 00000naa a2200000 c 4500
001 1946042315
003 DE-627
005 20251215104450.0
007 cr uuu---uuuuu
008 251215s2025 xx |||||o 00| ||eng c
024 7 |a 10.21468/SciPostPhys.18.6.200  |2 doi 
035 |a (DE-627)1946042315 
035 |a (DE-599)KXP1946042315 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Butter, Anja  |d 1990-  |e VerfasserIn  |0 (DE-588)1072198967  |0 (DE-627)827023944  |0 (DE-576)43315067X  |4 aut 
245 1 0 |a Generative unfolding with distribution mapping  |c Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn 
264 1 |c June 2025 
300 |b Illustrationen 
300 |a 28 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online erschienen: 20. Juni 2025 
500 |a Gesehen am 15.12.2025 
520 |a Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schrödinger Bridges and Direct Diffusion, in order to ensure that the models learn the correct conditional probabilities. This brings distribution mapping (DM) to a similar level of accuracy as the state-of-the-art conditional generative unfolding methods. Numerical results are presented with a standard benchmark dataset of single jet substructure as well as for a new dataset describing a 22-dimensional phase space of Z+2-jets. 
700 1 |a Diefenbacher, Sascha  |e VerfasserIn  |4 aut 
700 1 |a Hütsch, Nathan  |d 1996-  |e VerfasserIn  |0 (DE-588)1352781239  |0 (DE-627)1913732657  |4 aut 
700 1 |a Mikuni, Vinicius  |e VerfasserIn  |4 aut 
700 1 |a Nachman, Benjamin  |e VerfasserIn  |4 aut 
700 1 |a Palacios Schweitzer, Sofia  |d 1997-  |e VerfasserIn  |0 (DE-588)1372744908  |0 (DE-627)1932090924  |4 aut 
700 1 |a Plehn, Tilman  |d 1969-  |e VerfasserIn  |0 (DE-588)1021935573  |0 (DE-627)715839535  |0 (DE-576)363449809  |4 aut 
773 0 8 |i Enthalten in  |t SciPost physics  |d Amsterdam : SciPost Foundation, 2016  |g 18(2025), 6 vom: Juni, Artikel-ID 200, Seite 1-28  |h Online-Ressource  |w (DE-627)881391751  |w (DE-600)2886659-9  |w (DE-576)484813447  |x 2542-4653  |7 nnas  |a Generative unfolding with distribution mapping 
773 1 8 |g volume:18  |g year:2025  |g number:6  |g month:06  |g elocationid:200  |g pages:1-28  |g extent:28  |a Generative unfolding with distribution mapping 
856 4 0 |u https://doi.org/10.21468/SciPostPhys.18.6.200  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://scipost.org/10.21468/SciPostPhys.18.6.200  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20251215 
993 |a Article 
994 |a 2025 
998 |g 1021935573  |a Plehn, Tilman  |m 1021935573:Plehn, Tilman  |d 130000  |d 130300  |e 130000PP1021935573  |e 130300PP1021935573  |k 0/130000/  |k 1/130000/130300/  |p 7  |y j 
998 |g 1372744908  |a Palacios Schweitzer, Sofia  |m 1372744908:Palacios Schweitzer, Sofia  |d 130000  |d 130300  |d 130000  |e 130000PP1372744908  |e 130300PP1372744908  |e 130000PP1372744908  |k 0/130000/  |k 1/130000/130300/  |k 0/130000/  |p 6 
998 |g 1352781239  |a Hütsch, Nathan  |m 1352781239:Hütsch, Nathan  |d 130000  |e 130000PH1352781239  |k 0/130000/  |p 3 
998 |g 1072198967  |a Butter, Anja  |m 1072198967:Butter, Anja  |d 130000  |d 130300  |e 130000PB1072198967  |e 130300PB1072198967  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1946042315  |e 4828028641 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Generative unfolding with distribution mapping","title":"Generative unfolding with distribution mapping"}],"person":[{"family":"Butter","given":"Anja","roleDisplay":"VerfasserIn","display":"Butter, Anja","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Diefenbacher, Sascha","given":"Sascha","family":"Diefenbacher"},{"given":"Nathan","family":"Hütsch","role":"aut","roleDisplay":"VerfasserIn","display":"Hütsch, Nathan"},{"family":"Mikuni","given":"Vinicius","display":"Mikuni, Vinicius","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Nachman, Benjamin","roleDisplay":"VerfasserIn","given":"Benjamin","family":"Nachman"},{"given":"Sofia","family":"Palacios Schweitzer","role":"aut","display":"Palacios Schweitzer, Sofia","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Plehn, Tilman","roleDisplay":"VerfasserIn","given":"Tilman","family":"Plehn"}],"language":["eng"],"recId":"1946042315","note":["Online erschienen: 20. Juni 2025","Gesehen am 15.12.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.21468/SciPostPhys.18.6.200"],"eki":["1946042315"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"June 2025"}],"name":{"displayForm":["Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn"]},"relHost":[{"origin":[{"publisherPlace":"Amsterdam","publisher":"SciPost Foundation","dateIssuedDisp":"[2016]-"}],"id":{"issn":["2542-4653"],"zdb":["2886659-9"],"eki":["881391751"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"SciPost physics","title_sort":"SciPost physics"}],"pubHistory":["Vol. 1, issue 1 (September/October 2016)-"],"part":{"year":"2025","pages":"1-28","issue":"6","volume":"18","text":"18(2025), 6 vom: Juni, Artikel-ID 200, Seite 1-28","extent":"28"},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 06.03.17"],"disp":"Generative unfolding with distribution mappingSciPost physics","language":["eng"],"recId":"881391751"}],"physDesc":[{"noteIll":"Illustrationen","extent":"28 S."}]} 
SRT |a BUTTERANJAGENERATIVE2025