Generative unfolding with distribution mapping
Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schrödinger Bridges and Direct Diffusion, in order to ensure that the models...
Gespeichert in:
| Hauptverfasser: | , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
June 2025
|
| In: |
SciPost physics
Year: 2025, Jahrgang: 18, Heft: 6, Pages: 1-28 |
| ISSN: | 2542-4653 |
| DOI: | 10.21468/SciPostPhys.18.6.200 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.21468/SciPostPhys.18.6.200 Verlag, kostenfrei, Volltext: https://scipost.org/10.21468/SciPostPhys.18.6.200 |
| Verfasserangaben: | Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1946042315 | ||
| 003 | DE-627 | ||
| 005 | 20251215104450.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 251215s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.21468/SciPostPhys.18.6.200 |2 doi | |
| 035 | |a (DE-627)1946042315 | ||
| 035 | |a (DE-599)KXP1946042315 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Butter, Anja |d 1990- |e VerfasserIn |0 (DE-588)1072198967 |0 (DE-627)827023944 |0 (DE-576)43315067X |4 aut | |
| 245 | 1 | 0 | |a Generative unfolding with distribution mapping |c Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn |
| 264 | 1 | |c June 2025 | |
| 300 | |b Illustrationen | ||
| 300 | |a 28 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online erschienen: 20. Juni 2025 | ||
| 500 | |a Gesehen am 15.12.2025 | ||
| 520 | |a Machine learning enables unbinned, highly-differential cross section measurements. A recent idea uses generative models to morph a starting simulation into the unfolded data. We show how to extend two morphing techniques, Schrödinger Bridges and Direct Diffusion, in order to ensure that the models learn the correct conditional probabilities. This brings distribution mapping (DM) to a similar level of accuracy as the state-of-the-art conditional generative unfolding methods. Numerical results are presented with a standard benchmark dataset of single jet substructure as well as for a new dataset describing a 22-dimensional phase space of Z+2-jets. | ||
| 700 | 1 | |a Diefenbacher, Sascha |e VerfasserIn |4 aut | |
| 700 | 1 | |a Hütsch, Nathan |d 1996- |e VerfasserIn |0 (DE-588)1352781239 |0 (DE-627)1913732657 |4 aut | |
| 700 | 1 | |a Mikuni, Vinicius |e VerfasserIn |4 aut | |
| 700 | 1 | |a Nachman, Benjamin |e VerfasserIn |4 aut | |
| 700 | 1 | |a Palacios Schweitzer, Sofia |d 1997- |e VerfasserIn |0 (DE-588)1372744908 |0 (DE-627)1932090924 |4 aut | |
| 700 | 1 | |a Plehn, Tilman |d 1969- |e VerfasserIn |0 (DE-588)1021935573 |0 (DE-627)715839535 |0 (DE-576)363449809 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t SciPost physics |d Amsterdam : SciPost Foundation, 2016 |g 18(2025), 6 vom: Juni, Artikel-ID 200, Seite 1-28 |h Online-Ressource |w (DE-627)881391751 |w (DE-600)2886659-9 |w (DE-576)484813447 |x 2542-4653 |7 nnas |a Generative unfolding with distribution mapping |
| 773 | 1 | 8 | |g volume:18 |g year:2025 |g number:6 |g month:06 |g elocationid:200 |g pages:1-28 |g extent:28 |a Generative unfolding with distribution mapping |
| 856 | 4 | 0 | |u https://doi.org/10.21468/SciPostPhys.18.6.200 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |7 0 |
| 856 | 4 | 0 | |u https://scipost.org/10.21468/SciPostPhys.18.6.200 |x Verlag |z kostenfrei |3 Volltext |7 0 |
| 951 | |a AR | ||
| 992 | |a 20251215 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1021935573 |a Plehn, Tilman |m 1021935573:Plehn, Tilman |d 130000 |d 130300 |e 130000PP1021935573 |e 130300PP1021935573 |k 0/130000/ |k 1/130000/130300/ |p 7 |y j | ||
| 998 | |g 1372744908 |a Palacios Schweitzer, Sofia |m 1372744908:Palacios Schweitzer, Sofia |d 130000 |d 130300 |d 130000 |e 130000PP1372744908 |e 130300PP1372744908 |e 130000PP1372744908 |k 0/130000/ |k 1/130000/130300/ |k 0/130000/ |p 6 | ||
| 998 | |g 1352781239 |a Hütsch, Nathan |m 1352781239:Hütsch, Nathan |d 130000 |e 130000PH1352781239 |k 0/130000/ |p 3 | ||
| 998 | |g 1072198967 |a Butter, Anja |m 1072198967:Butter, Anja |d 130000 |d 130300 |e 130000PB1072198967 |e 130300PB1072198967 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1946042315 |e 4828028641 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"Generative unfolding with distribution mapping","title":"Generative unfolding with distribution mapping"}],"person":[{"family":"Butter","given":"Anja","roleDisplay":"VerfasserIn","display":"Butter, Anja","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Diefenbacher, Sascha","given":"Sascha","family":"Diefenbacher"},{"given":"Nathan","family":"Hütsch","role":"aut","roleDisplay":"VerfasserIn","display":"Hütsch, Nathan"},{"family":"Mikuni","given":"Vinicius","display":"Mikuni, Vinicius","roleDisplay":"VerfasserIn","role":"aut"},{"role":"aut","display":"Nachman, Benjamin","roleDisplay":"VerfasserIn","given":"Benjamin","family":"Nachman"},{"given":"Sofia","family":"Palacios Schweitzer","role":"aut","display":"Palacios Schweitzer, Sofia","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Plehn, Tilman","roleDisplay":"VerfasserIn","given":"Tilman","family":"Plehn"}],"language":["eng"],"recId":"1946042315","note":["Online erschienen: 20. Juni 2025","Gesehen am 15.12.2025"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"doi":["10.21468/SciPostPhys.18.6.200"],"eki":["1946042315"]},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"June 2025"}],"name":{"displayForm":["Anja Butter, Sascha Diefenbacher, Nathan Huetsch, Vinicius Mikuni, Benjamin Nachman, Sofia Palacios Schweitzer and Tilman Plehn"]},"relHost":[{"origin":[{"publisherPlace":"Amsterdam","publisher":"SciPost Foundation","dateIssuedDisp":"[2016]-"}],"id":{"issn":["2542-4653"],"zdb":["2886659-9"],"eki":["881391751"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"SciPost physics","title_sort":"SciPost physics"}],"pubHistory":["Vol. 1, issue 1 (September/October 2016)-"],"part":{"year":"2025","pages":"1-28","issue":"6","volume":"18","text":"18(2025), 6 vom: Juni, Artikel-ID 200, Seite 1-28","extent":"28"},"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 06.03.17"],"disp":"Generative unfolding with distribution mappingSciPost physics","language":["eng"],"recId":"881391751"}],"physDesc":[{"noteIll":"Illustrationen","extent":"28 S."}]} | ||
| SRT | |a BUTTERANJAGENERATIVE2025 | ||