Gradient-based optimization of all-pass filter networks for non-invasive electroanatomical mapping

Existing approaches to non-invasive electroanatomical mapping face a fundamental challenge: accurately representing the continuous propagation velocities crucial for cardiac arrhythmia localization. Current methods either sacrifice precision by using discrete delays or require computationally intens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Engelhardt, Erik (VerfasserIn) , Hoffmann, Johannes (VerfasserIn) , Boueke, Moritz (VerfasserIn) , Elsner, Lukas (VerfasserIn) , Leye, Marius (VerfasserIn) , Frey, Norbert (VerfasserIn) , Schmidt, Gerhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2025
In: IEEE access
Year: 2025, Jahrgang: 13, Pages: 126147-126166
ISSN:2169-3536
DOI:10.1109/ACCESS.2025.3588293
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/ACCESS.2025.3588293
Verlag, kostenfrei, Volltext: https://ieeexplore.ieee.org/document/11078281
Volltext
Verfasserangaben:Erik Engelhardt, (Student Member, IEEE), Johannes Hoffmann, (Graduate Student Member, IEEE), Moritz Boueke,Lukas Elsner, (Student Member, IEEE), Marius Leye, Norbert Frey, and Gerhard Schmidt (Member, IEEE)

MARC

LEADER 00000naa a2200000 c 4500
001 1948413132
003 DE-627
005 20260112080341.0
007 cr uuu---uuuuu
008 260112s2025 xx |||||o 00| ||eng c
024 7 |a 10.1109/ACCESS.2025.3588293  |2 doi 
035 |a (DE-627)1948413132 
035 |a (DE-599)KXP1948413132 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Engelhardt, Erik  |e VerfasserIn  |0 (DE-588)1321709625  |0 (DE-627)1881578763  |4 aut 
245 1 0 |a Gradient-based optimization of all-pass filter networks for non-invasive electroanatomical mapping  |c Erik Engelhardt, (Student Member, IEEE), Johannes Hoffmann, (Graduate Student Member, IEEE), Moritz Boueke,Lukas Elsner, (Student Member, IEEE), Marius Leye, Norbert Frey, and Gerhard Schmidt (Member, IEEE) 
264 1 |c 2025 
300 |b Illustrationen 
300 |a 20 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Datum der Veröffentlichung: 11. Juli 2025, Artikelversion: 23. Juli 2025 
500 |a Gesehen am 12.01.2026 
520 |a Existing approaches to non-invasive electroanatomical mapping face a fundamental challenge: accurately representing the continuous propagation velocities crucial for cardiac arrhythmia localization. Current methods either sacrifice precision by using discrete delays or require computationally intensive biophysical models that limit clinical applicability. We investigated interconnected all-pass filter networks as a novel middle ground that enables continuous, differentiable representation of cardiac propagation velocities while maintaining computational tractability. Through systematic analysis of these networks’ fundamental properties and scaling behavior, we demonstrate successful gradient-based optimization of propagation velocities in networks of up to 50 filters and 2D arrangements of 5\times 5 voxels using magnetocardiographic measurements, while identifying critical scaling challenges in more complex geometries. Our experiments establish that reliable convergence requires at least 32-48 magnetic sensors operating below a noise threshold of approximately \mathrm 7 pT/\sqrt Hz . Runtime analysis shows linear computational scaling with system size, with GPU implementations achieving up to \mathrm 50 \times acceleration over CPU versions, processing a realistic cardiac model with about 30000 voxels in under 5 s per epoch. These findings establish the theoretical feasibility of all-pass filter networks for cardiac propagation velocity modeling while identifying practical implementation requirements for clinical applications. This approach could reduce patient risks by eliminating invasive catheterization procedures and enable longitudinal studies and research applications not feasible with current invasive methods. 
650 4 |a All-pass filter networks 
650 4 |a cardiac propagation velocity 
650 4 |a computational modeling 
650 4 |a Computational modeling 
650 4 |a Current density 
650 4 |a Delays 
650 4 |a gradient descent optimization 
650 4 |a IIR filters 
650 4 |a Information filters 
650 4 |a Magnetic sensors 
650 4 |a Magnetic separation 
650 4 |a magnetocardiography 
650 4 |a non-invasive electroanatomical mapping 
650 4 |a Optical filters 
650 4 |a Optimization 
650 4 |a Sensors 
700 1 |a Hoffmann, Johannes  |e VerfasserIn  |4 aut 
700 1 |a Boueke, Moritz  |e VerfasserIn  |4 aut 
700 1 |a Elsner, Lukas  |e VerfasserIn  |4 aut 
700 1 |a Leye, Marius  |e VerfasserIn  |0 (DE-588)1370525818  |0 (DE-627)1929700970  |4 aut 
700 1 |a Frey, Norbert  |e VerfasserIn  |0 (DE-588)141244976  |0 (DE-627)625824075  |0 (DE-576)322969514  |4 aut 
700 1 |a Schmidt, Gerhard  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE access  |d New York, NY : IEEE, 2013  |g 13(2025), Seite 126147-126166  |h Online-Ressource  |w (DE-627)728440385  |w (DE-600)2687964-5  |w (DE-576)373180713  |x 2169-3536  |7 nnas 
773 1 8 |g volume:13  |g year:2025  |g pages:126147-126166  |g extent:20  |a Gradient-based optimization of all-pass filter networks for non-invasive electroanatomical mapping 
856 4 0 |u https://doi.org/10.1109/ACCESS.2025.3588293  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://ieeexplore.ieee.org/document/11078281  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260112 
993 |a Article 
994 |a 2025 
998 |g 141244976  |a Frey, Norbert  |m 141244976:Frey, Norbert  |d 910000  |d 910100  |e 910000PF141244976  |e 910100PF141244976  |k 0/910000/  |k 1/910000/910100/  |p 6 
998 |g 1370525818  |a Leye, Marius  |m 1370525818:Leye, Marius  |d 910000  |d 910100  |e 910000PL1370525818  |e 910100PL1370525818  |k 0/910000/  |k 1/910000/910100/  |p 5 
999 |a KXP-PPN1948413132  |e 4844750526 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"display":"Engelhardt, Erik","given":"Erik","family":"Engelhardt","role":"aut"},{"display":"Hoffmann, Johannes","given":"Johannes","family":"Hoffmann","role":"aut"},{"given":"Moritz","display":"Boueke, Moritz","role":"aut","family":"Boueke"},{"given":"Lukas","display":"Elsner, Lukas","role":"aut","family":"Elsner"},{"display":"Leye, Marius","given":"Marius","role":"aut","family":"Leye"},{"given":"Norbert","display":"Frey, Norbert","family":"Frey","role":"aut"},{"role":"aut","family":"Schmidt","display":"Schmidt, Gerhard","given":"Gerhard"}],"recId":"1948413132","note":["Datum der Veröffentlichung: 11. Juli 2025, Artikelversion: 23. Juli 2025","Gesehen am 12.01.2026"],"language":["eng"],"name":{"displayForm":["Erik Engelhardt, (Student Member, IEEE), Johannes Hoffmann, (Graduate Student Member, IEEE), Moritz Boueke,Lukas Elsner, (Student Member, IEEE), Marius Leye, Norbert Frey, and Gerhard Schmidt (Member, IEEE)"]},"relHost":[{"origin":[{"dateIssuedKey":"2013","publisherPlace":"New York, NY","publisher":"IEEE","dateIssuedDisp":"2013-"}],"title":[{"subtitle":"practical research, open solutions","title":"IEEE access","title_sort":"IEEE access"}],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2687964-5"],"eki":["728440385"],"issn":["2169-3536"]},"recId":"728440385","name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"titleAlt":[{"title":"Access"}],"corporate":[{"role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"disp":"Institute of Electrical and Electronics EngineersIEEE access","type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.2013 -"],"note":["Gesehen am 24.10.12"],"language":["eng"],"part":{"pages":"126147-126166","extent":"20","text":"13(2025), Seite 126147-126166","volume":"13","year":"2025"}}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"2025"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Gradient-based optimization of all-pass filter networks for non-invasive electroanatomical mapping","title":"Gradient-based optimization of all-pass filter networks for non-invasive electroanatomical mapping"}],"id":{"eki":["1948413132"],"doi":["10.1109/ACCESS.2025.3588293"]},"physDesc":[{"noteIll":"Illustrationen","extent":"20 S."}]} 
SRT |a ENGELHARDTGRADIENTBA2025