What neuroscience can tell AI about learning in continuously changing environments: perspectives

Modern artificial intelligence (AI) models, such as large language models, are usually trained once on a huge corpus of data, potentially fine-tuned for a specific task and then deployed with fixed parameters. Their training is costly, slow and gradual, requiring billions of repetitions. In stark co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Durstewitz, Daniel (VerfasserIn) , Averbeck, Bruno (VerfasserIn) , Koppe, Georgia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2025
In: Nature machine intelligence
Year: 2025, Jahrgang: 7, Heft: 12, Pages: 1897-1912
ISSN:2522-5839
DOI:10.1038/s42256-025-01146-z
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-025-01146-z
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-025-01146-z
Volltext
Verfasserangaben:Daniel Durstewitz, Bruno Averbeck & Georgia Koppe

MARC

LEADER 00000naa a2200000 c 4500
001 1948458055
003 DE-627
005 20260112112012.0
007 cr uuu---uuuuu
008 260112s2025 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-025-01146-z  |2 doi 
035 |a (DE-627)1948458055 
035 |a (DE-599)KXP1948458055 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 11  |2 sdnb 
100 1 |a Durstewitz, Daniel  |d 1967-  |e VerfasserIn  |0 (DE-588)12042021X  |0 (DE-627)080664008  |0 (DE-576)174757050  |4 aut 
245 1 0 |a What neuroscience can tell AI about learning in continuously changing environments  |b perspectives  |c Daniel Durstewitz, Bruno Averbeck & Georgia Koppe 
264 1 |c December 2025 
300 |b Illustrationen, Diagramme 
300 |a 16 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 28. November 2025 
500 |a Gesehen am 12.01.2026 
520 |a Modern artificial intelligence (AI) models, such as large language models, are usually trained once on a huge corpus of data, potentially fine-tuned for a specific task and then deployed with fixed parameters. Their training is costly, slow and gradual, requiring billions of repetitions. In stark contrast, animals continuously adapt to the ever-changing contingencies in their environments. This is particularly important for social species, where behavioural policies and reward outcomes may frequently change in interaction with peers. The underlying computational processes are often marked by rapid shifts in an animal’s behaviour and rather sudden transitions in neuronal population activity. Such computational capacities are of growing importance for AI systems operating in the real world, like those guiding robots or autonomous vehicles, or for agentic AI interacting with humans online. Can AI learn from neuroscience? This Perspective explores this question, integrating the literature on continual and in-context learning in AI with the neuroscience of learning on behavioural tasks with shifting rules, reward probabilities or outcomes. We outline an agenda for how the links between neuroscience and AI could be tightened, thus supporting the transfer of ideas and findings between both areas and contributing to the evolving field of NeuroAI. 
650 4 |a Computational neuroscience 
650 4 |a Machine learning 
700 1 |a Averbeck, Bruno  |e VerfasserIn  |0 (DE-588)1386464325  |0 (DE-627)1948458845  |4 aut 
700 1 |a Koppe, Georgia  |d 1984-  |e VerfasserIn  |0 (DE-588)1095801198  |0 (DE-627)856418498  |0 (DE-576)467814724  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 7(2025), 12 vom: Dez., Seite 1897-1912  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a What neuroscience can tell AI about learning in continuously changing environments perspectives 
773 1 8 |g volume:7  |g year:2025  |g number:12  |g month:12  |g pages:1897-1912  |g extent:16  |a What neuroscience can tell AI about learning in continuously changing environments perspectives 
856 4 0 |u https://doi.org/10.1038/s42256-025-01146-z  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://www.nature.com/articles/s42256-025-01146-z  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
992 |a 20260112 
993 |a Article 
994 |a 2025 
998 |g 1095801198  |a Koppe, Georgia  |m 1095801198:Koppe, Georgia  |d 60000  |e 60000PK1095801198  |k 0/60000/  |p 3  |y j 
998 |g 12042021X  |a Durstewitz, Daniel  |m 12042021X:Durstewitz, Daniel  |d 60000  |e 60000PD12042021X  |k 0/60000/  |p 1  |x j 
999 |a KXP-PPN1948458055  |e 4845257386 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"title":[{"title":"What neuroscience can tell AI about learning in continuously changing environments","subtitle":"perspectives","title_sort":"What neuroscience can tell AI about learning in continuously changing environments"}],"person":[{"family":"Durstewitz","given":"Daniel","role":"aut","display":"Durstewitz, Daniel"},{"family":"Averbeck","given":"Bruno","role":"aut","display":"Averbeck, Bruno"},{"family":"Koppe","display":"Koppe, Georgia","role":"aut","given":"Georgia"}],"name":{"displayForm":["Daniel Durstewitz, Bruno Averbeck & Georgia Koppe"]},"relHost":[{"id":{"eki":["1025147669"],"zdb":["2933875-X"],"issn":["2522-5839"]},"physDesc":[{"extent":"Online-Ressource"}],"disp":"What neuroscience can tell AI about learning in continuously changing environments perspectivesNature machine intelligence","note":["Gesehen am 30.04.25"],"type":{"media":"Online-Ressource","bibl":"periodical"},"recId":"1025147669","origin":[{"publisherPlace":"[London]","publisher":"Springer Nature Publishing","dateIssuedDisp":"[2019]-"}],"pubHistory":["Volume 1, no. 1 (January 2019)-"],"title":[{"title":"Nature machine intelligence","title_sort":"Nature machine intelligence"}],"part":{"volume":"7","text":"7(2025), 12 vom: Dez., Seite 1897-1912","year":"2025","issue":"12","extent":"16","pages":"1897-1912"},"language":["eng"]}],"note":["Online veröffentlicht: 28. November 2025","Gesehen am 12.01.2026"],"id":{"eki":["1948458055"],"doi":["10.1038/s42256-025-01146-z"]},"physDesc":[{"noteIll":"Illustrationen, Diagramme","extent":"16 S."}],"origin":[{"dateIssuedDisp":"December 2025","dateIssuedKey":"2025"}],"recId":"1948458055","type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a DURSTEWITZWHATNEUROS2025