Weak abelian direct summands and irreducibility of Galois representations
Let $$\rho _\ell $$be a semisimple $$\ell $$-adic representation of a number field K that is unramified almost everywhere. We introduce a new notion called weak abelian direct summands of $$\rho _\ell $$and completely characterize them, for example, if the algebraic monodromy of $$\rho _\ell $$is co...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
19 August 2025
|
| In: |
Mathematische Annalen
Year: 2025, Volume: 393, Pages: 543-569 |
| ISSN: | 1432-1807 |
| DOI: | 10.1007/s00208-025-03252-0 |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00208-025-03252-0 |
| Author Notes: | Gebhard Böckle, Chun-Yin Hui |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1948545667 | ||
| 003 | DE-627 | ||
| 005 | 20260113095003.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 260113s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00208-025-03252-0 |2 doi | |
| 035 | |a (DE-627)1948545667 | ||
| 035 | |a (DE-599)KXP1948545667 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Böckle, Gebhard |d 1964- |e VerfasserIn |0 (DE-588)1052651798 |0 (DE-627)788915908 |0 (DE-576)408431660 |4 aut | |
| 245 | 1 | 0 | |a Weak abelian direct summands and irreducibility of Galois representations |c Gebhard Böckle, Chun-Yin Hui |
| 264 | 1 | |c 19 August 2025 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online veröffentlicht: 19. August 2025 | ||
| 500 | |a Gesehen am 13.01.2026 | ||
| 520 | |a Let $$\rho _\ell $$be a semisimple $$\ell $$-adic representation of a number field K that is unramified almost everywhere. We introduce a new notion called weak abelian direct summands of $$\rho _\ell $$and completely characterize them, for example, if the algebraic monodromy of $$\rho _\ell $$is connected. If $$\rho _\ell $$is in addition E-rational for some number field E, we prove that the weak abelian direct summands are locally algebraic (and thus de Rham). We also show that the weak abelian parts of a connected semisimple Serre compatible system form again such a system. Using our results on weak abelian direct summands, when K is totally real and $$\rho _\ell $$is the three-dimensional $$\ell $$-adic representation attached to a regular algebraic cuspidal automorphic, not necessarily polarizable representation $$\pi $$of $$\textrm{GL}_3(\mathbb {A}_K)$$together with an isomorphism $$\mathbb {C}\simeq {\overline{\mathbb {Q}}}_\ell $$, we prove that $$\rho _\ell $$is irreducible. We deduce in this case also some $$\ell $$-adic Hodge theoretic properties of $$\rho _\ell $$if $$\ell $$belongs to a Dirichlet density one set of primes. | ||
| 650 | 4 | |a 11F22 | |
| 650 | 4 | |a 11F70 | |
| 650 | 4 | |a 11F80 | |
| 650 | 4 | |a 20G05 | |
| 700 | 1 | |a Hui, Chun Yin |e VerfasserIn |0 (DE-588)1386560278 |0 (DE-627)1948546248 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematische Annalen |d Berlin : Springer, 1869 |g 393(2025), Seite 543-569 |h Online-Ressource |w (DE-627)254630715 |w (DE-600)1462120-4 |w (DE-576)074529668 |x 1432-1807 |7 nnas |a Weak abelian direct summands and irreducibility of Galois representations |
| 773 | 1 | 8 | |g volume:393 |g year:2025 |g pages:543-569 |g extent:27 |a Weak abelian direct summands and irreducibility of Galois representations |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s00208-025-03252-0 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |7 0 |
| 951 | |a AR | ||
| 992 | |a 20260113 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1052651798 |a Böckle, Gebhard |m 1052651798:Böckle, Gebhard |d 110000 |d 110400 |e 110000PB1052651798 |e 110400PB1052651798 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1948545667 |e 4845598523 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Weak abelian direct summands and irreducibility of Galois representations","title_sort":"Weak abelian direct summands and irreducibility of Galois representations"}],"relHost":[{"pubHistory":["1.1869 -"],"note":["Gesehen am 02.12.05"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"254630715","id":{"zdb":["1462120-4"],"issn":["1432-1807"],"eki":["254630715"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"disp":"Weak abelian direct summands and irreducibility of Galois representationsMathematische Annalen","part":{"year":"2025","extent":"27","volume":"393","pages":"543-569","text":"393(2025), Seite 543-569"},"origin":[{"dateIssuedDisp":"1869-","dateIssuedKey":"1869","publisherPlace":"Berlin ; Heidelberg","publisher":"Springer"}],"title":[{"title_sort":"Mathematische Annalen","title":"Mathematische Annalen"}]}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"19 August 2025"}],"language":["eng"],"physDesc":[{"extent":"27 S."}],"note":["Online veröffentlicht: 19. August 2025","Gesehen am 13.01.2026"],"person":[{"given":"Gebhard","family":"Böckle","roleDisplay":"VerfasserIn","role":"aut","display":"Böckle, Gebhard"},{"roleDisplay":"VerfasserIn","display":"Hui, Chun Yin","role":"aut","given":"Chun Yin","family":"Hui"}],"name":{"displayForm":["Gebhard Böckle, Chun-Yin Hui"]},"id":{"doi":["10.1007/s00208-025-03252-0"],"eki":["1948545667"]},"recId":"1948545667"} | ||
| SRT | |a BOECKLEGEBWEAKABELIA1920 | ||