Weak abelian direct summands and irreducibility of Galois representations

Let $$\rho _\ell $$be a semisimple $$\ell $$-adic representation of a number field K that is unramified almost everywhere. We introduce a new notion called weak abelian direct summands of $$\rho _\ell $$and completely characterize them, for example, if the algebraic monodromy of $$\rho _\ell $$is co...

Full description

Saved in:
Bibliographic Details
Main Authors: Böckle, Gebhard (Author) , Hui, Chun Yin (Author)
Format: Article (Journal)
Language:English
Published: 19 August 2025
In: Mathematische Annalen
Year: 2025, Volume: 393, Pages: 543-569
ISSN:1432-1807
DOI:10.1007/s00208-025-03252-0
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1007/s00208-025-03252-0
Get full text
Author Notes:Gebhard Böckle, Chun-Yin Hui

MARC

LEADER 00000naa a2200000 c 4500
001 1948545667
003 DE-627
005 20260113095003.0
007 cr uuu---uuuuu
008 260113s2025 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00208-025-03252-0  |2 doi 
035 |a (DE-627)1948545667 
035 |a (DE-599)KXP1948545667 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Böckle, Gebhard  |d 1964-  |e VerfasserIn  |0 (DE-588)1052651798  |0 (DE-627)788915908  |0 (DE-576)408431660  |4 aut 
245 1 0 |a Weak abelian direct summands and irreducibility of Galois representations  |c Gebhard Böckle, Chun-Yin Hui 
264 1 |c 19 August 2025 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online veröffentlicht: 19. August 2025 
500 |a Gesehen am 13.01.2026 
520 |a Let $$\rho _\ell $$be a semisimple $$\ell $$-adic representation of a number field K that is unramified almost everywhere. We introduce a new notion called weak abelian direct summands of $$\rho _\ell $$and completely characterize them, for example, if the algebraic monodromy of $$\rho _\ell $$is connected. If $$\rho _\ell $$is in addition E-rational for some number field E, we prove that the weak abelian direct summands are locally algebraic (and thus de Rham). We also show that the weak abelian parts of a connected semisimple Serre compatible system form again such a system. Using our results on weak abelian direct summands, when K is totally real and $$\rho _\ell $$is the three-dimensional $$\ell $$-adic representation attached to a regular algebraic cuspidal automorphic, not necessarily polarizable representation $$\pi $$of $$\textrm{GL}_3(\mathbb {A}_K)$$together with an isomorphism $$\mathbb {C}\simeq {\overline{\mathbb {Q}}}_\ell $$, we prove that $$\rho _\ell $$is irreducible. We deduce in this case also some $$\ell $$-adic Hodge theoretic properties of $$\rho _\ell $$if $$\ell $$belongs to a Dirichlet density one set of primes. 
650 4 |a 11F22 
650 4 |a 11F70 
650 4 |a 11F80 
650 4 |a 20G05 
700 1 |a Hui, Chun Yin  |e VerfasserIn  |0 (DE-588)1386560278  |0 (DE-627)1948546248  |4 aut 
773 0 8 |i Enthalten in  |t Mathematische Annalen  |d Berlin : Springer, 1869  |g 393(2025), Seite 543-569  |h Online-Ressource  |w (DE-627)254630715  |w (DE-600)1462120-4  |w (DE-576)074529668  |x 1432-1807  |7 nnas  |a Weak abelian direct summands and irreducibility of Galois representations 
773 1 8 |g volume:393  |g year:2025  |g pages:543-569  |g extent:27  |a Weak abelian direct summands and irreducibility of Galois representations 
856 4 0 |u https://doi.org/10.1007/s00208-025-03252-0  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260113 
993 |a Article 
994 |a 2025 
998 |g 1052651798  |a Böckle, Gebhard  |m 1052651798:Böckle, Gebhard  |d 110000  |d 110400  |e 110000PB1052651798  |e 110400PB1052651798  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1948545667  |e 4845598523 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Weak abelian direct summands and irreducibility of Galois representations","title_sort":"Weak abelian direct summands and irreducibility of Galois representations"}],"relHost":[{"pubHistory":["1.1869 -"],"note":["Gesehen am 02.12.05"],"physDesc":[{"extent":"Online-Ressource"}],"recId":"254630715","id":{"zdb":["1462120-4"],"issn":["1432-1807"],"eki":["254630715"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"disp":"Weak abelian direct summands and irreducibility of Galois representationsMathematische Annalen","part":{"year":"2025","extent":"27","volume":"393","pages":"543-569","text":"393(2025), Seite 543-569"},"origin":[{"dateIssuedDisp":"1869-","dateIssuedKey":"1869","publisherPlace":"Berlin ; Heidelberg","publisher":"Springer"}],"title":[{"title_sort":"Mathematische Annalen","title":"Mathematische Annalen"}]}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"19 August 2025"}],"language":["eng"],"physDesc":[{"extent":"27 S."}],"note":["Online veröffentlicht: 19. August 2025","Gesehen am 13.01.2026"],"person":[{"given":"Gebhard","family":"Böckle","roleDisplay":"VerfasserIn","role":"aut","display":"Böckle, Gebhard"},{"roleDisplay":"VerfasserIn","display":"Hui, Chun Yin","role":"aut","given":"Chun Yin","family":"Hui"}],"name":{"displayForm":["Gebhard Böckle, Chun-Yin Hui"]},"id":{"doi":["10.1007/s00208-025-03252-0"],"eki":["1948545667"]},"recId":"1948545667"} 
SRT |a BOECKLEGEBWEAKABELIA1920