Deep learning for ultra-large-scale semantic segmentation of geographic 3D point clouds with missing labels

Semantic segmentation of 3D point clouds is a critical task essential for research and industry in a wide variety of domains. Most works until now use datasets where the concept of large-scale varies between 1.17 and 9,261 million points and 0.31 and 250 square kilometers. In this research, we push...

Full description

Saved in:
Bibliographic Details
Main Authors: Esmorís Pena, Alberto M. (Author) , Yermo, Miguel (Author) , Alcaraz, Silvia R. (Author) , Soutullo, Samuel (Author) , Fernández-Rivera, Francisco (Author)
Format: Article (Journal)
Language:English
Published: 2026
In: IEEE access
Year: 2026, Volume: 14, Pages: 485-501
ISSN:2169-3536
DOI:10.1109/ACCESS.2025.3647154
Online Access:Verlag, kostenfrei, Volltext: https://doi.org/10.1109/ACCESS.2025.3647154
Verlag, kostenfrei, Volltext: https://ieeexplore.ieee.org/document/11311458
Get full text
Author Notes:Alberto M. Esmorís, Miguel Yermo, Silvia R. Alcaraz, Samuel Soutullo, Francisco F. Rivera

MARC

LEADER 00000caa a2200000 c 4500
001 1948547996
003 DE-627
005 20260114121713.0
007 cr uuu---uuuuu
008 260113s2026 xx |||||o 00| ||eng c
024 7 |a 10.1109/ACCESS.2025.3647154  |2 doi 
035 |a (DE-627)1948547996 
035 |a (DE-599)KXP1948547996 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Esmorís Pena, Alberto M.  |d 1993-  |e VerfasserIn  |0 (DE-588)1325863661  |0 (DE-627)1885623674  |4 aut 
245 1 0 |a Deep learning for ultra-large-scale semantic segmentation of geographic 3D point clouds with missing labels  |c Alberto M. Esmorís, Miguel Yermo, Silvia R. Alcaraz, Samuel Soutullo, Francisco F. Rivera 
264 1 |c 2026 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 13.01.2026 
500 |a Online veröffentlicht: 22. Dezember 2025 
520 |a Semantic segmentation of 3D point clouds is a critical task essential for research and industry in a wide variety of domains. Most works until now use datasets where the concept of large-scale varies between 1.17 and 9,261 million points and 0.31 and 250 square kilometers. In this research, we push the limits of 3D deep learning by considering approximately 36,369 million points and 29,557 square kilometers in our case study. To the best of our knowledge, it is the largest geographic region ever classified with neural networks for 3D point clouds in scientific works. The main contributions of our research are: 1) The first published results on semantic segmentation of ultra-large-scale and low-resolution airborne laser scanning point clouds, 2) adapted neural networks to work under missing labels and high measurement error conditions, 3) the introduction of class ambiguity as a more robust uncertainty measurement compared to entropy, and 4) an open-source deep learning framework for 3D point clouds that enables the reproducibility of our experiments and further studies. 
650 4 |a 3D point clouds 
650 4 |a Buildings 
650 4 |a deep learning 
650 4 |a Deep learning 
650 4 |a large-scale 
650 4 |a LiDAR 
650 4 |a Point cloud compression 
650 4 |a semantic segmentation 
650 4 |a Semantic segmentation 
650 4 |a semi-supervised training 
650 4 |a Solid modeling 
650 4 |a Three-dimensional displays 
650 4 |a Training 
650 4 |a Trees (botanical) 
650 4 |a Vegetation 
650 4 |a Vegetation mapping 
700 1 |a Yermo, Miguel  |e VerfasserIn  |4 aut 
700 1 |a Alcaraz, Silvia R.  |e VerfasserIn  |4 aut 
700 1 |a Soutullo, Samuel  |e VerfasserIn  |4 aut 
700 1 |a Fernández-Rivera, Francisco  |e VerfasserIn  |0 (DE-588)138656592X  |0 (DE-627)1948551705  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Electrical and Electronics Engineers  |t IEEE access  |d New York, NY : IEEE, 2013  |g 14(2026), Seite 485-501  |h Online-Ressource  |w (DE-627)728440385  |w (DE-600)2687964-5  |w (DE-576)373180713  |x 2169-3536  |7 nnas 
773 1 8 |g volume:14  |g year:2026  |g pages:485-501  |g extent:17  |a Deep learning for ultra-large-scale semantic segmentation of geographic 3D point clouds with missing labels 
856 4 0 |u https://doi.org/10.1109/ACCESS.2025.3647154  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://ieeexplore.ieee.org/document/11311458  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260113 
993 |a Article 
994 |a 2026 
998 |g 1325863661  |a Esmorís Pena, Alberto M.  |m 1325863661:Esmorís Pena, Alberto M.  |d 120000  |d 120700  |e 120000PE1325863661  |e 120700PE1325863661  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1948547996  |e 4846013073 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"bibl":"article-journal","media":"Online-Ressource"},"name":{"displayForm":["Alberto M. Esmorís, Miguel Yermo, Silvia R. Alcaraz, Samuel Soutullo, Francisco F. Rivera"]},"title":[{"title_sort":"Deep learning for ultra-large-scale semantic segmentation of geographic 3D point clouds with missing labels","title":"Deep learning for ultra-large-scale semantic segmentation of geographic 3D point clouds with missing labels"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"corporate":[{"roleDisplay":"VerfasserIn","role":"aut","display":"Institute of Electrical and Electronics Engineers"}],"recId":"728440385","note":["Gesehen am 24.10.12"],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Institute of Electrical and Electronics EngineersIEEE access","id":{"zdb":["2687964-5"],"issn":["2169-3536"],"eki":["728440385"]},"origin":[{"dateIssuedDisp":"2013-","dateIssuedKey":"2013","publisher":"IEEE","publisherPlace":"New York, NY"}],"part":{"pages":"485-501","volume":"14","text":"14(2026), Seite 485-501","extent":"17","year":"2026"},"title":[{"subtitle":"practical research, open solutions","title_sort":"IEEE access","title":"IEEE access"}],"name":{"displayForm":["Institute of Electrical and Electronics Engineers"]},"pubHistory":["1.2013 -"],"titleAlt":[{"title":"Access"}]}],"origin":[{"dateIssuedKey":"2026","dateIssuedDisp":"2026"}],"id":{"eki":["1948547996"],"doi":["10.1109/ACCESS.2025.3647154"]},"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Esmorís Pena, Alberto M.","family":"Esmorís Pena","given":"Alberto M."},{"roleDisplay":"VerfasserIn","role":"aut","display":"Yermo, Miguel","family":"Yermo","given":"Miguel"},{"display":"Alcaraz, Silvia R.","roleDisplay":"VerfasserIn","role":"aut","given":"Silvia R.","family":"Alcaraz"},{"given":"Samuel","family":"Soutullo","display":"Soutullo, Samuel","role":"aut","roleDisplay":"VerfasserIn"},{"family":"Fernández-Rivera","given":"Francisco","role":"aut","roleDisplay":"VerfasserIn","display":"Fernández-Rivera, Francisco"}],"note":["Gesehen am 13.01.2026","Online veröffentlicht: 22. Dezember 2025"],"language":["eng"],"recId":"1948547996","physDesc":[{"extent":"17 S."}]} 
SRT |a ESMORISPENDEEPLEARNI2026