International medical students‘ improvement in communication skills in psychosomatic care: a natural language processing based analysis [data]

In this study, we evaluated international medical students' communication skills in the context of psychosomatic medicine, after attending a three-day training seminar. Using a pre-post-assessment-design, we assessed the development in communication skills using Natural Language Processing (NLP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sgrott, Julia (VerfasserIn) , Nikendei, Christoph (VerfasserIn) , Nagy, Ede (VerfasserIn) , Smirnov, Aleksei (VerfasserIn) , Arias Alvarado, Josefina (VerfasserIn) , Friederich, Hans-Christoph (VerfasserIn) , Dönnhoff, Ivo (VerfasserIn)
Dokumenttyp: Datenbank Forschungsdaten
Sprache:Englisch
Veröffentlicht: Heidelberg Universität 2025-11-06
DOI:10.11588/DATA/2ETDYP
Schlagworte:
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.11588/DATA/2ETDYP
Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/DATA/2ETDYP
Volltext
Verfasserangaben:Julia Sgrott, Christoph Nikendei, Ede Nagy, Aleksei Smirnov, Josefina Arias Alvarado, Hans-Christoph Friederich, Ivo Dönnhoff
Beschreibung
Zusammenfassung:In this study, we evaluated international medical students' communication skills in the context of psychosomatic medicine, after attending a three-day training seminar. Using a pre-post-assessment-design, we assessed the development in communication skills using Natural Language Processing (NLP) as well as traditional rating scales. International students significantly improved their communication style towards a more patient-centered approach. This dataverse contains the following data: all the materials used in the training seminar; the binary and global rating instruments used in the ratings; the rating results; international students' demographic data; the transcription rules in German and English, which were followed in the video transcription process; R-Markdowns with the R code used in statistical analysis of NLP parameters and rating data as well as our results. All participants were anonymized.
Beschreibung:Gesehen am 14.01.2026
Beschreibung:Online Resource
DOI:10.11588/DATA/2ETDYP