Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone: expert lexicon of terms, multi-reader performance and contribution of artificial intelligence

Background: According to PI-RADS v2.1, peripheral PI-RADS 3 lesions are upgraded to PI-RADS 4 if dynamic contrast-enhanced MRI is positive (3+1 lesions), however those lesions are radiologically challenging. We aimed to define criteria by expert consensus and test applicability by other radiologists...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Glemser, Philip (VerfasserIn) , Netzer, Nils (VerfasserIn) , Ziener, Christian H. (VerfasserIn) , Wilhelm, Markus (VerfasserIn) , Hielscher, Thomas (VerfasserIn) , Zhang, Kevin Sun (VerfasserIn) , Görtz, Magdalena (VerfasserIn) , Schütz, Viktoria (VerfasserIn) , Stenzinger, Albrecht (VerfasserIn) , Hohenfellner, Markus (VerfasserIn) , Schlemmer, Heinz-Peter (VerfasserIn) , Bonekamp, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 August 2025
In: Cancer imaging
Year: 2025, Jahrgang: 25, Pages: 1-14
ISSN:1470-7330
DOI:10.1186/s40644-025-00916-7
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s40644-025-00916-7
Volltext
Verfasserangaben:Philip A. Glemser, Nils Netzer, Christian H. Ziener, Markus Wilhelm, Thomas Hielscher, Kevin Sun Zhang, Magdalena Görtz, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp

MARC

LEADER 00000naa a2200000 c 4500
001 1948726998
003 DE-627
005 20260114122119.0
007 cr uuu---uuuuu
008 260114s2025 xx |||||o 00| ||eng c
024 7 |a 10.1186/s40644-025-00916-7  |2 doi 
035 |a (DE-627)1948726998 
035 |a (DE-599)KXP1948726998 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Glemser, Philip  |e VerfasserIn  |0 (DE-588)1029777756  |0 (DE-627)734092520  |0 (DE-576)377624667  |4 aut 
245 1 0 |a Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone  |b expert lexicon of terms, multi-reader performance and contribution of artificial intelligence  |c Philip A. Glemser, Nils Netzer, Christian H. Ziener, Markus Wilhelm, Thomas Hielscher, Kevin Sun Zhang, Magdalena Görtz, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp 
246 3 0 |a three one 
264 1 |c 19 August 2025 
300 |b Illustrationen 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 19. August 2025 
500 |a Gesehen am 14.01.2026 
520 |a Background: According to PI-RADS v2.1, peripheral PI-RADS 3 lesions are upgraded to PI-RADS 4 if dynamic contrast-enhanced MRI is positive (3+1 lesions), however those lesions are radiologically challenging. We aimed to define criteria by expert consensus and test applicability by other radiologists for sPC prediction of PI-RADS 3+1 lesions and determine their value in integrated regression models. Methods: From consecutive 3 Tesla MR examinations performed between 08/2016 to 12/2018 we identified 85 MRI examinations from 83 patients with a total of 94 PI-RADS 3+1 lesions in the official clinical report. Lesions were retrospectively assessed by expert consensus with construction of a newly devised feature catalogue which was utilized subsequently by two additional radiologists specialized in prostate MRI for independent lesion assessment. With reference to extended fused targeted and systematic TRUS/MRI-biopsy histopathological correlation, relevant catalogue features were identified by univariate analysis and put into context to typically available clinical features and automated AI image assessment utilizing lasso-penalized logistic regression models, also focusing on the contribution of DCE imaging (feature-based, bi- and multiparametric AI-enhanced and solely bi- and multiparametric AI-driven). Results: The feature catalog enabled image-based lesional risk stratification for all readers. Expert consensus provided 3 significant features in univariate analysis (adj. p-value <0.05; most relevant feature T2w configuration: “irregular/microlobulated/spiculated”, OR 9.0 (95%CI 2.3-44.3); adj. p-value: 0.016). These remained after lasso penalized regression based feature reduction, while the only selected clinical feature was prostate volume (OR<1), enabling nomogram construction. While DCE-derived consensus features did not enhance model performance (bootstrapped AUC), there was a trend for increased performance by including multiparametric AI, but not biparametric AI into models, both for combined and AI-only models. Conclusions: PI-RADS 3+1 lesions can be risk-stratified using lexicon terms and a key feature nomogram. AI potentially benefits more from DCE imaging than experienced prostate radiologists. 
650 4 |a Deep learning 
650 4 |a Extended fused biopsy 
650 4 |a Lexicon terms 
650 4 |a Prostate cancer 
650 4 |a Risk stratification 
700 1 |a Netzer, Nils  |e VerfasserIn  |0 (DE-588)1254537902  |0 (DE-627)1797012975  |4 aut 
700 1 |a Ziener, Christian H.  |d 1978-  |e VerfasserIn  |0 (DE-588)137982755  |0 (DE-627)59885309X  |0 (DE-576)306117355  |4 aut 
700 1 |a Wilhelm, Markus  |e VerfasserIn  |4 aut 
700 1 |a Hielscher, Thomas  |e VerfasserIn  |0 (DE-588)1159594791  |0 (DE-627)1022977768  |0 (DE-576)50506068X  |4 aut 
700 1 |a Zhang, Kevin Sun  |e VerfasserIn  |0 (DE-588)1207581461  |0 (DE-627)1694082342  |4 aut 
700 1 |a Görtz, Magdalena  |d 1992-  |e VerfasserIn  |0 (DE-588)1166813657  |0 (DE-627)1030681392  |0 (DE-576)510916600  |4 aut 
700 1 |a Schütz, Viktoria  |e VerfasserIn  |0 (DE-588)1183860021  |0 (DE-627)1663385335  |4 aut 
700 1 |a Stenzinger, Albrecht  |e VerfasserIn  |0 (DE-588)139606106  |0 (DE-627)703395238  |0 (DE-576)312432755  |4 aut 
700 1 |a Hohenfellner, Markus  |d 1958-  |e VerfasserIn  |0 (DE-588)133862518  |0 (DE-627)557857988  |0 (DE-576)300155263  |4 aut 
700 1 |a Schlemmer, Heinz-Peter  |d 1961-  |e VerfasserIn  |0 (DE-588)1025559967  |0 (DE-627)722927142  |0 (DE-576)17334805X  |4 aut 
700 1 |a Bonekamp, David  |d 1977-  |e VerfasserIn  |0 (DE-588)128868104  |0 (DE-627)383668581  |0 (DE-576)297371797  |4 aut 
773 0 8 |i Enthalten in  |t Cancer imaging  |d London : BioMed Central, 2000  |g 25(2025), Artikel-ID 102, Seite 1-14  |h Online-Ressource  |w (DE-627)36374732X  |w (DE-600)2104862-9  |w (DE-576)34726624X  |x 1470-7330  |7 nnas  |a Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone expert lexicon of terms, multi-reader performance and contribution of artificial intelligence 
773 1 8 |g volume:25  |g year:2025  |g elocationid:102  |g pages:1-14  |g extent:14  |a Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone expert lexicon of terms, multi-reader performance and contribution of artificial intelligence 
856 4 0 |u https://doi.org/10.1186/s40644-025-00916-7  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260114 
993 |a Article 
994 |a 2025 
998 |g 128868104  |a Bonekamp, David  |m 128868104:Bonekamp, David  |d 50000  |e 50000PB128868104  |k 0/50000/  |p 12  |y j 
998 |g 1025559967  |a Schlemmer, Heinz-Peter  |m 1025559967:Schlemmer, Heinz-Peter  |d 50000  |e 50000PS1025559967  |k 0/50000/  |p 11 
998 |g 133862518  |a Hohenfellner, Markus  |m 133862518:Hohenfellner, Markus  |d 910000  |d 910200  |e 910000PH133862518  |e 910200PH133862518  |k 0/910000/  |k 1/910000/910200/  |p 10 
998 |g 139606106  |a Stenzinger, Albrecht  |m 139606106:Stenzinger, Albrecht  |d 910000  |d 912000  |e 910000PS139606106  |e 912000PS139606106  |k 0/910000/  |k 1/910000/912000/  |p 9 
998 |g 1183860021  |a Schütz, Viktoria  |m 1183860021:Schütz, Viktoria  |d 910000  |d 910200  |e 910000PS1183860021  |e 910200PS1183860021  |k 0/910000/  |k 1/910000/910200/  |p 8 
998 |g 1166813657  |a Görtz, Magdalena  |m 1166813657:Görtz, Magdalena  |d 910000  |d 910200  |d 50000  |e 910000PG1166813657  |e 910200PG1166813657  |e 50000PG1166813657  |k 0/910000/  |k 1/910000/910200/  |k 0/50000/  |p 7 
998 |g 1207581461  |a Zhang, Kevin Sun  |m 1207581461:Zhang, Kevin Sun  |d 50000  |e 50000PZ1207581461  |k 0/50000/  |p 6 
998 |g 1159594791  |a Hielscher, Thomas  |m 1159594791:Hielscher, Thomas  |d 50000  |e 50000PH1159594791  |k 0/50000/  |p 5 
998 |g 137982755  |a Ziener, Christian H.  |m 137982755:Ziener, Christian H.  |d 50000  |e 50000PZ137982755  |k 0/50000/  |p 3 
998 |g 1254537902  |a Netzer, Nils  |m 1254537902:Netzer, Nils  |d 910000  |d 911400  |d 50000  |e 910000PN1254537902  |e 911400PN1254537902  |e 50000PN1254537902  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 2 
998 |g 1029777756  |a Glemser, Philip  |m 1029777756:Glemser, Philip  |d 50000  |e 50000PG1029777756  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1948726998  |e 4847833082 
BIB |a Y 
SER |a journal 
JSO |a {"id":{"doi":["10.1186/s40644-025-00916-7"],"eki":["1948726998"]},"name":{"displayForm":["Philip A. Glemser, Nils Netzer, Christian H. Ziener, Markus Wilhelm, Thomas Hielscher, Kevin Sun Zhang, Magdalena Görtz, Viktoria Schütz, Albrecht Stenzinger, Markus Hohenfellner, Heinz-Peter Schlemmer and David Bonekamp"]},"physDesc":[{"extent":"14 S.","noteIll":"Illustrationen"}],"recId":"1948726998","note":["Veröffentlicht: 19. August 2025","Gesehen am 14.01.2026"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"subtitle":"expert lexicon of terms, multi-reader performance and contribution of artificial intelligence","title_sort":"Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone","title":"Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone"}],"relHost":[{"origin":[{"dateIssuedKey":"2000","publisherPlace":"London ; Heidelberg ; New York, NY","dateIssuedDisp":"2000-","publisher":"BioMed Central ; BMC, part of Springer Nature"}],"pubHistory":["1.2000 -"],"id":{"issn":["1470-7330"],"eki":["36374732X"],"zdb":["2104862-9"]},"part":{"extent":"14","text":"25(2025), Artikel-ID 102, Seite 1-14","volume":"25","year":"2025","pages":"1-14"},"title":[{"subtitle":"the official publication of the International Cancer Imaging Society","title_sort":"Cancer imaging","title":"Cancer imaging"}],"language":["eng"],"type":{"bibl":"periodical","media":"Online-Ressource"},"note":["Gesehen am 20.03.23"],"recId":"36374732X","physDesc":[{"extent":"Online-Ressource"}],"disp":"Improving risk stratification of PI-RADS 3 + 1 lesions of the peripheral zone expert lexicon of terms, multi-reader performance and contribution of artificial intelligenceCancer imaging"}],"person":[{"display":"Glemser, Philip","given":"Philip","role":"aut","family":"Glemser"},{"family":"Netzer","role":"aut","given":"Nils","display":"Netzer, Nils"},{"display":"Ziener, Christian H.","given":"Christian H.","role":"aut","family":"Ziener"},{"family":"Wilhelm","role":"aut","given":"Markus","display":"Wilhelm, Markus"},{"family":"Hielscher","role":"aut","given":"Thomas","display":"Hielscher, Thomas"},{"given":"Kevin Sun","role":"aut","family":"Zhang","display":"Zhang, Kevin Sun"},{"role":"aut","given":"Magdalena","family":"Görtz","display":"Görtz, Magdalena"},{"family":"Schütz","given":"Viktoria","role":"aut","display":"Schütz, Viktoria"},{"display":"Stenzinger, Albrecht","role":"aut","given":"Albrecht","family":"Stenzinger"},{"given":"Markus","role":"aut","family":"Hohenfellner","display":"Hohenfellner, Markus"},{"role":"aut","given":"Heinz-Peter","family":"Schlemmer","display":"Schlemmer, Heinz-Peter"},{"role":"aut","given":"David","family":"Bonekamp","display":"Bonekamp, David"}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"19 August 2025"}]} 
SRT |a GLEMSERPHIIMPROVINGR1920