Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE

Background: Accurate prediction of tumor response after drug-eluting beads transarterial chemoembolization (DEB-TACE) remains challenging in hepatocellular carcinoma (HCC), given tumor heterogeneity and dynamic changes over time. Existing prediction models based on single timepoint imaging do not ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei, Nan (VerfasserIn) , Mathy, René Michael (VerfasserIn) , Chang, De-Hua (VerfasserIn) , Mayer, Philipp (VerfasserIn) , Liermann, Jakob (VerfasserIn) , Springfeld, Christoph (VerfasserIn) , Dill, Michael T. (VerfasserIn) , Longerich, Thomas (VerfasserIn) , Lurje, Georg (VerfasserIn) , Kauczor, Hans-Ulrich (VerfasserIn) , Wielpütz, Mark Oliver (VerfasserIn) , Öcal, Osman (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 19 August 2025
In: Cancer imaging
Year: 2025, Jahrgang: 25, Pages: 1-13
ISSN:1470-7330
DOI:10.1186/s40644-025-00926-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s40644-025-00926-5
Volltext
Verfasserangaben:Nan Wei, René Michael Mathy, De-Hua Chang, Philipp Mayer, Jakob Liermann, Christoph Springfeld, Michael T. Dill, Thomas Longerich, Georg Lurje, Hans-Ulrich Kauczor, Mark O. Wielpütz and Osman Öcal

MARC

LEADER 00000naa a2200000 c 4500
001 1948934353
003 DE-627
005 20260115123136.0
007 cr uuu---uuuuu
008 260115s2025 xx |||||o 00| ||eng c
024 7 |a 10.1186/s40644-025-00926-5  |2 doi 
035 |a (DE-627)1948934353 
035 |a (DE-599)KXP1948934353 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wei, Nan  |e VerfasserIn  |0 (DE-588)1386811297  |0 (DE-627)1948938502  |4 aut 
245 1 0 |a Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE  |c Nan Wei, René Michael Mathy, De-Hua Chang, Philipp Mayer, Jakob Liermann, Christoph Springfeld, Michael T. Dill, Thomas Longerich, Georg Lurje, Hans-Ulrich Kauczor, Mark O. Wielpütz and Osman Öcal 
264 1 |c 19 August 2025 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Veröffentlicht: 19. August 2025 
500 |a Gesehen am 15.01.2026 
520 |a Background: Accurate prediction of tumor response after drug-eluting beads transarterial chemoembolization (DEB-TACE) remains challenging in hepatocellular carcinoma (HCC), given tumor heterogeneity and dynamic changes over time. Existing prediction models based on single timepoint imaging do not capture dynamic treatment-induced changes. This study aims to develop and validate a predictive model that integrates deep learning and machine learning algorithms on longitudinal contrast-enhanced MRI (CE-MRI) to predict treatment response in HCC patients undergoing DEB-TACE. Methods: This retrospective study included 202 HCC patients treated with DEB-TACE from 2004 to 2023, divided into a training cohort (n = 141) and validation cohort (n = 61). Radiomics and deep learning features were extracted from standardized longitudinal CE-MRI to capture dynamic tumor changes. Feature selection involved correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator regression. The patients were categorized into two groups: the objective response group (n = 123, 60.9%; complete response = 35, 28.5%; partial response = 88, 71.5%) and the non-response group (n = 79, 39.1%; stable disease = 62, 78.5%; progressive disease = 17, 21.5%). Predictive models were constructed using radiomics, deep learning, and integrated features. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of the models. Results: We retrospectively evaluated 202 patients (62.67 ± 9.25 years old) with HCC treated after DEB-TACE. A total of 7,182 radiomics features and 4,096 deep learning features were extracted from the longitudinal CE-MRI images. The integrated model was developed using 13 quantitative radiomics features and 4 deep learning features and demonstrated acceptable and robust performance with an receiver operating characteristic curve (AUC) of 0.941 (95%CI: 0.893–0.989) in the training cohort, and AUC of 0.925 (95%CI: 0.850–0.998) with accuracy of 86.9%, sensitivity of 83.7%, as well as specificity of 94.4% in the validation set. Conclusions: This study presents a predictive model based on longitudinal CE-MRI data to estimate tumor response to DEB-TACE in HCC patients. By capturing tumor dynamics and integrating radiomics features with deep learning features, the model has the potential to guide individualized treatment strategies and inform clinical decision-making regarding patient management. 
650 4 |a Deep learning 
650 4 |a HCC 
650 4 |a Machine learning 
650 4 |a Siamese network 
650 4 |a Tumor response 
700 1 |a Mathy, René Michael  |e VerfasserIn  |0 (DE-588)1225699282  |0 (DE-627)1745562877  |4 aut 
700 1 |a Chang, De-Hua  |d 1978-  |e VerfasserIn  |0 (DE-588)132043939  |0 (DE-627)517295210  |0 (DE-576)298911752  |4 aut 
700 1 |a Mayer, Philipp  |d 1985-  |e VerfasserIn  |0 (DE-588)1066605440  |0 (DE-627)817714758  |0 (DE-576)426052250  |4 aut 
700 1 |a Liermann, Jakob  |d 1989-  |e VerfasserIn  |0 (DE-588)1147779287  |0 (DE-627)1007181842  |0 (DE-576)496034170  |4 aut 
700 1 |a Springfeld, Christoph  |d 1972-  |e VerfasserIn  |0 (DE-588)123388910  |0 (DE-627)706281039  |0 (DE-576)293689385  |4 aut 
700 1 |a Dill, Michael T.  |d 1983-  |e VerfasserIn  |0 (DE-588)1116508109  |0 (DE-627)871189305  |0 (DE-576)478447914  |4 aut 
700 1 |a Longerich, Thomas  |d 1974-  |e VerfasserIn  |0 (DE-588)128494514  |0 (DE-627)373916124  |0 (DE-576)297178059  |4 aut 
700 1 |a Lurje, Georg  |d 1979-  |e VerfasserIn  |0 (DE-588)136689949  |0 (DE-627)694581410  |0 (DE-576)301211744  |4 aut 
700 1 |a Kauczor, Hans-Ulrich  |d 1962-  |e VerfasserIn  |0 (DE-588)139267123  |0 (DE-627)70327113X  |0 (DE-576)310955327  |4 aut 
700 1 |a Wielpütz, Mark Oliver  |d 1982-  |e VerfasserIn  |0 (DE-588)139999752  |0 (DE-627)614754682  |0 (DE-576)314127046  |4 aut 
700 1 |a Öcal, Osman  |d 1989-  |e VerfasserIn  |0 (DE-588)1270864645  |0 (DE-627)1819701956  |4 aut 
773 0 8 |i Enthalten in  |t Cancer imaging  |d London : BioMed Central, 2000  |g 25(2025), Artikel-ID 104, Seite 1-13  |h Online-Ressource  |w (DE-627)36374732X  |w (DE-600)2104862-9  |w (DE-576)34726624X  |x 1470-7330  |7 nnas  |a Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE 
773 1 8 |g volume:25  |g year:2025  |g elocationid:104  |g pages:1-13  |g extent:13  |a Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE 
856 4 0 |u https://doi.org/10.1186/s40644-025-00926-5  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260115 
993 |a Article 
994 |a 2025 
998 |g 1270864645  |a Öcal, Osman  |m 1270864645:Öcal, Osman  |d 910000  |d 911400  |e 910000PO1270864645  |e 911400PO1270864645  |k 0/910000/  |k 1/910000/911400/  |p 12  |y j 
998 |g 139999752  |a Wielpütz, Mark Oliver  |m 139999752:Wielpütz, Mark Oliver  |d 50000  |e 50000PW139999752  |k 0/50000/  |p 11 
998 |g 139267123  |a Kauczor, Hans-Ulrich  |m 139267123:Kauczor, Hans-Ulrich  |d 910000  |d 911400  |e 910000PK139267123  |e 911400PK139267123  |k 0/910000/  |k 1/910000/911400/  |p 10 
998 |g 136689949  |a Lurje, Georg  |m 136689949:Lurje, Georg  |d 910000  |d 912000  |e 910000PL136689949  |e 912000PL136689949  |k 0/910000/  |k 1/910000/912000/  |p 9 
998 |g 128494514  |a Longerich, Thomas  |m 128494514:Longerich, Thomas  |d 910000  |d 912000  |e 910000PL128494514  |e 912000PL128494514  |k 0/910000/  |k 1/910000/912000/  |p 8 
998 |g 1116508109  |a Dill, Michael T.  |m 1116508109:Dill, Michael T.  |d 910000  |d 910100  |e 910000PD1116508109  |e 910100PD1116508109  |k 0/910000/  |k 1/910000/910100/  |p 7 
998 |g 123388910  |a Springfeld, Christoph  |m 123388910:Springfeld, Christoph  |d 910000  |d 910100  |d 50000  |e 910000PS123388910  |e 910100PS123388910  |e 50000PS123388910  |k 0/910000/  |k 1/910000/910100/  |k 0/50000/  |p 6 
998 |g 1147779287  |a Liermann, Jakob  |m 1147779287:Liermann, Jakob  |d 910000  |d 911400  |d 50000  |e 910000PL1147779287  |e 911400PL1147779287  |e 50000PL1147779287  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 5 
998 |g 1066605440  |a Mayer, Philipp  |m 1066605440:Mayer, Philipp  |d 910000  |d 911400  |e 910000PM1066605440  |e 911400PM1066605440  |k 0/910000/  |k 1/910000/911400/  |p 4 
998 |g 132043939  |a Chang, De-Hua  |m 132043939:Chang, De-Hua  |d 50000  |e 50000PC132043939  |k 0/50000/  |p 3 
998 |g 1225699282  |a Mathy, René Michael  |m 1225699282:Mathy, René Michael  |d 910000  |d 911400  |e 910000PM1225699282  |e 911400PM1225699282  |k 0/910000/  |k 1/910000/911400/  |p 2 
998 |g 1386811297  |a Wei, Nan  |m 1386811297:Wei, Nan  |d 50000  |e 50000PW1386811297  |k 0/50000/  |p 1  |x j 
999 |a KXP-PPN1948934353  |e 4849724086 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1948934353","physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"relHost":[{"pubHistory":["1.2000 -"],"origin":[{"publisherPlace":"London ; Heidelberg ; New York, NY","dateIssuedKey":"2000","dateIssuedDisp":"2000-","publisher":"BioMed Central ; BMC, part of Springer Nature"}],"part":{"year":"2025","pages":"1-13","extent":"13","text":"25(2025), Artikel-ID 104, Seite 1-13","volume":"25"},"title":[{"title_sort":"Cancer imaging","title":"Cancer imaging","subtitle":"the official publication of the International Cancer Imaging Society"}],"id":{"zdb":["2104862-9"],"eki":["36374732X"],"issn":["1470-7330"]},"note":["Gesehen am 20.03.23"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"recId":"36374732X","physDesc":[{"extent":"Online-Ressource"}],"disp":"Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACECancer imaging"}],"person":[{"display":"Wei, Nan","given":"Nan","role":"aut","family":"Wei"},{"display":"Mathy, René Michael","family":"Mathy","given":"René Michael","role":"aut"},{"display":"Chang, De-Hua","family":"Chang","role":"aut","given":"De-Hua"},{"given":"Philipp","role":"aut","family":"Mayer","display":"Mayer, Philipp"},{"display":"Liermann, Jakob","family":"Liermann","given":"Jakob","role":"aut"},{"display":"Springfeld, Christoph","family":"Springfeld","role":"aut","given":"Christoph"},{"display":"Dill, Michael T.","role":"aut","given":"Michael T.","family":"Dill"},{"display":"Longerich, Thomas","role":"aut","given":"Thomas","family":"Longerich"},{"display":"Lurje, Georg","role":"aut","given":"Georg","family":"Lurje"},{"display":"Kauczor, Hans-Ulrich","family":"Kauczor","given":"Hans-Ulrich","role":"aut"},{"display":"Wielpütz, Mark Oliver","family":"Wielpütz","role":"aut","given":"Mark Oliver"},{"family":"Öcal","given":"Osman","role":"aut","display":"Öcal, Osman"}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"19 August 2025"}],"title":[{"title":"Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE","title_sort":"Longitudinal CE-MRI-based Siamese network with machine learning to predict tumor response in HCC after DEB-TACE"}],"note":["Veröffentlicht: 19. August 2025","Gesehen am 15.01.2026"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"name":{"displayForm":["Nan Wei, René Michael Mathy, De-Hua Chang, Philipp Mayer, Jakob Liermann, Christoph Springfeld, Michael T. Dill, Thomas Longerich, Georg Lurje, Hans-Ulrich Kauczor, Mark O. Wielpütz and Osman Öcal"]},"id":{"eki":["1948934353"],"doi":["10.1186/s40644-025-00926-5"]}} 
SRT |a WEINANMATHLONGITUDIN1920