On the descendent Gromov-Witten theory of a K3 surface

We study the reduced descendent Gromov–Witten theory of K3 surfaces in primitive curve classes. We present a conjectural closed formula for the stationary theory, which generalizes the Bryan–Leung formula. We also prove a new recursion that allows to remove descendent insertions of 1 in many instanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Oberdieck, Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 8 April 2025
In: Portugaliae mathematica
Year: 2025, Jahrgang: 82, Heft: 3, Pages: 357-386
ISSN:1662-2758
DOI:10.4171/pm/2143
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.4171/pm/2143
Verlag, kostenfrei, Volltext: https://ems.press/journals/pm/articles/14298704
Volltext
Verfasserangaben:Georg Oberdieck

MARC

LEADER 00000caa a2200000 c 4500
001 1949382443
003 DE-627
005 20260119113704.0
007 cr uuu---uuuuu
008 260116s2025 xx |||||o 00| ||eng c
024 7 |a 10.4171/pm/2143  |2 doi 
035 |a (DE-627)1949382443 
035 |a (DE-599)KXP1949382443 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Oberdieck, Georg  |d 1988-  |e VerfasserIn  |0 (DE-588)1081631104  |0 (DE-627)846374161  |0 (DE-576)454645198  |4 aut 
245 1 0 |a On the descendent Gromov-Witten theory of a K3 surface  |c Georg Oberdieck 
264 1 |c 8 April 2025 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.01.2026 
520 |a We study the reduced descendent Gromov–Witten theory of K3 surfaces in primitive curve classes. We present a conjectural closed formula for the stationary theory, which generalizes the Bryan–Leung formula. We also prove a new recursion that allows to remove descendent insertions of 1 in many instances. Together this yields an efficient way to compute a large class of invariants (modulo the conjecture on the stationary part). As a corollary we conjecture a surprising polynomial structure which underlies the Gromov–Witten invariants of the K3 surface. 
773 0 8 |i Enthalten in  |t Portugaliae mathematica  |d Lisboa : [Verlag nicht ermittelbar], 1940  |g 82(2025), 3, Seite 357-386  |h Online-Ressource  |w (DE-627)327052538  |w (DE-600)2043557-5  |w (DE-576)110616219  |x 1662-2758  |7 nnas  |a On the descendent Gromov-Witten theory of a K3 surface 
773 1 8 |g volume:82  |g year:2025  |g number:3  |g pages:357-386  |g extent:30  |a On the descendent Gromov-Witten theory of a K3 surface 
856 4 0 |u https://doi.org/10.4171/pm/2143  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://ems.press/journals/pm/articles/14298704  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260116 
993 |a Article 
994 |a 2025 
998 |g 1081631104  |a Oberdieck, Georg  |m 1081631104:Oberdieck, Georg  |d 110000  |d 110400  |e 110000PO1081631104  |e 110400PO1081631104  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1949382443  |e 4850718744 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1949382443","note":["Gesehen am 16.01.2026"],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1937/40(1940) -"],"note":["Gesehen am 17.09.21"],"recId":"327052538","part":{"year":"2025","extent":"30","pages":"357-386","text":"82(2025), 3, Seite 357-386","issue":"3","volume":"82"},"corporate":[{"display":"Sociedade Portuguesa de Matemática","roleDisplay":"Herausgebendes Organ","role":"isb"}],"id":{"issn":["1662-2758"],"doi":["10.4171/PM"],"zdb":["2043557-5"],"eki":["327052538"]},"language":["eng"],"disp":"On the descendent Gromov-Witten theory of a K3 surfacePortugaliae mathematica","origin":[{"dateIssuedKey":"1940","publisherPlace":"Lisboa","dateIssuedDisp":"1940-","publisher":"[Verlag nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Sociedade Portuguesa de Matematica"]},"title":[{"title_sort":"Portugaliae mathematica","title":"Portugaliae mathematica"}]}],"name":{"displayForm":["Georg Oberdieck"]},"physDesc":[{"extent":"30 S."}],"id":{"doi":["10.4171/pm/2143"],"eki":["1949382443"]},"origin":[{"dateIssuedDisp":"8 April 2025","dateIssuedKey":"2025"}],"language":["eng"],"person":[{"family":"Oberdieck","display":"Oberdieck, Georg","given":"Georg","role":"aut","roleDisplay":"VerfasserIn"}],"title":[{"title":"On the descendent Gromov-Witten theory of a K3 surface","title_sort":"On the descendent Gromov-Witten theory of a K3 surface"}]} 
SRT |a OBERDIECKGONTHEDESCE8202