On the descendent Gromov-Witten theory of a K3 surface
We study the reduced descendent Gromov–Witten theory of K3 surfaces in primitive curve classes. We present a conjectural closed formula for the stationary theory, which generalizes the Bryan–Leung formula. We also prove a new recursion that allows to remove descendent insertions of 1 in many instanc...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
8 April 2025
|
| In: |
Portugaliae mathematica
Year: 2025, Jahrgang: 82, Heft: 3, Pages: 357-386 |
| ISSN: | 1662-2758 |
| DOI: | 10.4171/pm/2143 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.4171/pm/2143 Verlag, kostenfrei, Volltext: https://ems.press/journals/pm/articles/14298704 |
| Verfasserangaben: | Georg Oberdieck |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1949382443 | ||
| 003 | DE-627 | ||
| 005 | 20260119113704.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 260116s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.4171/pm/2143 |2 doi | |
| 035 | |a (DE-627)1949382443 | ||
| 035 | |a (DE-599)KXP1949382443 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Oberdieck, Georg |d 1988- |e VerfasserIn |0 (DE-588)1081631104 |0 (DE-627)846374161 |0 (DE-576)454645198 |4 aut | |
| 245 | 1 | 0 | |a On the descendent Gromov-Witten theory of a K3 surface |c Georg Oberdieck |
| 264 | 1 | |c 8 April 2025 | |
| 300 | |a 30 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.01.2026 | ||
| 520 | |a We study the reduced descendent Gromov–Witten theory of K3 surfaces in primitive curve classes. We present a conjectural closed formula for the stationary theory, which generalizes the Bryan–Leung formula. We also prove a new recursion that allows to remove descendent insertions of 1 in many instances. Together this yields an efficient way to compute a large class of invariants (modulo the conjecture on the stationary part). As a corollary we conjecture a surprising polynomial structure which underlies the Gromov–Witten invariants of the K3 surface. | ||
| 773 | 0 | 8 | |i Enthalten in |t Portugaliae mathematica |d Lisboa : [Verlag nicht ermittelbar], 1940 |g 82(2025), 3, Seite 357-386 |h Online-Ressource |w (DE-627)327052538 |w (DE-600)2043557-5 |w (DE-576)110616219 |x 1662-2758 |7 nnas |a On the descendent Gromov-Witten theory of a K3 surface |
| 773 | 1 | 8 | |g volume:82 |g year:2025 |g number:3 |g pages:357-386 |g extent:30 |a On the descendent Gromov-Witten theory of a K3 surface |
| 856 | 4 | 0 | |u https://doi.org/10.4171/pm/2143 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |7 0 |
| 856 | 4 | 0 | |u https://ems.press/journals/pm/articles/14298704 |x Verlag |z kostenfrei |3 Volltext |7 0 |
| 951 | |a AR | ||
| 992 | |a 20260116 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1081631104 |a Oberdieck, Georg |m 1081631104:Oberdieck, Georg |d 110000 |d 110400 |e 110000PO1081631104 |e 110400PO1081631104 |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1949382443 |e 4850718744 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1949382443","note":["Gesehen am 16.01.2026"],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["1.1937/40(1940) -"],"note":["Gesehen am 17.09.21"],"recId":"327052538","part":{"year":"2025","extent":"30","pages":"357-386","text":"82(2025), 3, Seite 357-386","issue":"3","volume":"82"},"corporate":[{"display":"Sociedade Portuguesa de Matemática","roleDisplay":"Herausgebendes Organ","role":"isb"}],"id":{"issn":["1662-2758"],"doi":["10.4171/PM"],"zdb":["2043557-5"],"eki":["327052538"]},"language":["eng"],"disp":"On the descendent Gromov-Witten theory of a K3 surfacePortugaliae mathematica","origin":[{"dateIssuedKey":"1940","publisherPlace":"Lisboa","dateIssuedDisp":"1940-","publisher":"[Verlag nicht ermittelbar]"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Sociedade Portuguesa de Matematica"]},"title":[{"title_sort":"Portugaliae mathematica","title":"Portugaliae mathematica"}]}],"name":{"displayForm":["Georg Oberdieck"]},"physDesc":[{"extent":"30 S."}],"id":{"doi":["10.4171/pm/2143"],"eki":["1949382443"]},"origin":[{"dateIssuedDisp":"8 April 2025","dateIssuedKey":"2025"}],"language":["eng"],"person":[{"family":"Oberdieck","display":"Oberdieck, Georg","given":"Georg","role":"aut","roleDisplay":"VerfasserIn"}],"title":[{"title":"On the descendent Gromov-Witten theory of a K3 surface","title_sort":"On the descendent Gromov-Witten theory of a K3 surface"}]} | ||
| SRT | |a OBERDIECKGONTHEDESCE8202 | ||