Identifying melanoma among benign simulators: is there a role for deep learning convolutional neural networks? (MelSim Study)

Importance - Early detection of cutaneous melanoma (CM) is crucial for patient survival, yet avoiding overdiagnosis remains essential. Differentiating CM from benign melanoma simulators (MelSim) is challenging due to overlapping features. Deep learning convolutional neural networks (DL-CNNs) have de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vollmer, Anastasia S. (VerfasserIn) , Winkler, Julia K. (VerfasserIn) , Kommoss, Katharina (VerfasserIn) , Blum, Andreas (VerfasserIn) , Stolz, Wilhelm (VerfasserIn) , Enk, Alexander (VerfasserIn) , Hänßle, Holger (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 August 2025
In: European journal of cancer
Year: 2025, Jahrgang: 227, Pages: 1-8
ISSN:1879-0852
DOI:10.1016/j.ejca.2025.115706
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.ejca.2025.115706
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0959804925004885
Volltext
Verfasserangaben:A.S. Vollmer, J.K. Winkler, K.S. Kommoss, A. Blum, W. Stolz, A. Enk, H.A. Haenssle

MARC

LEADER 00000caa a2200000 c 4500
001 1949987841
003 DE-627
005 20260126150150.0
007 cr uuu---uuuuu
008 260122s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.ejca.2025.115706  |2 doi 
035 |a (DE-627)1949987841 
035 |a (DE-599)KXP1949987841 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vollmer, Anastasia S.  |e VerfasserIn  |0 (DE-588)1276293097  |0 (DE-627)1828248258  |4 aut 
245 1 0 |a Identifying melanoma among benign simulators  |b is there a role for deep learning convolutional neural networks? (MelSim Study)  |c A.S. Vollmer, J.K. Winkler, K.S. Kommoss, A. Blum, W. Stolz, A. Enk, H.A. Haenssle 
264 1 |c 10 August 2025 
300 |b Diagramme, Illustrationen 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.01.2026 
520 |a Importance - Early detection of cutaneous melanoma (CM) is crucial for patient survival, yet avoiding overdiagnosis remains essential. Differentiating CM from benign melanoma simulators (MelSim) is challenging due to overlapping features. Deep learning convolutional neural networks (DL-CNNs) have demonstrated dermatologist-level accuracy in identifying CM. We hypothesized that support from DL-CNN could increase dermatologists’ accuracy in differentiating CM from MelSim. - Methods - This cross-sectional reader study analyzed the diagnostic performance of a DL-CNN and 27 dermatologists for 200 skin lesions (100 CM, 100 MelSim). The DL-CNN assigned malignancy scores ranging from 0 to 1 (> 0.5 indicating malignancy). Dermatologists assessed lesions across three levels: (I) dermoscopy only, (II) full case information (dermoscopy, close-up images, metadata), and (III) full case information plus DL-CNN scores. Primary outcomes were sensitivity, specificity, and ROC-AUC of dermatologists with or without DL-CNN-support (level-II versus -III). - Results - The DL-CNN and dermatologists in level-II showed a comparable sensitivity (95% CI) of 90.0% (82.6-94.5%) and 90.1% (86.9-93.2%, p=0.153), respectively. However, the DL-CNN’s specificity (67.0% (57.3-75.4%) versus 73.2% (69.1-77.3%)) and ROC-AUC (0.889 (0.845-0.932) versus 0.951 (0.920-0.982)) were significantly lower than for dermatologists (all p<0.01). When dermatologists integrated DL-CNN predictions (level-III) their sensitivity increased to 91.4% (88.3-94.5%, p<0.001) without markedly changing specificity (74.2% (70.6-77.7%, p=0.435)) or ROC-AUC (0.954 (0.927-0.982, p=0.581)). - Conclusion - Collaboration with a DL-CNN slightly improved dermatologists’ diagnostic accuracy in a mixed CM and MelSim dataset, by increasing sensitivity without a loss of specificity. The DL-CNN’s level of sensitivity in this difficult-to-diagnose dataset underlines the potential as an assistant diagnostic tool. 
650 4 |a Dermoscopy 
650 4 |a DL-CNN 
650 4 |a Human with machine 
650 4 |a Melanoma 
650 4 |a Melanoma simulators 
700 1 |a Winkler, Julia K.  |d 1987-  |e VerfasserIn  |0 (DE-588)1038218993  |0 (DE-627)756780721  |0 (DE-576)392196514  |4 aut 
700 1 |a Kommoss, Katharina  |e VerfasserIn  |0 (DE-588)1216661227  |0 (DE-627)1727913124  |4 aut 
700 1 |a Blum, Andreas  |d 1964-  |e VerfasserIn  |0 (DE-588)1115750909  |0 (DE-627)869952331  |0 (DE-576)477919286  |4 aut 
700 1 |a Stolz, Wilhelm  |d 1958-  |e VerfasserIn  |0 (DE-588)123498694  |0 (DE-627)082591156  |0 (DE-576)293734623  |4 aut 
700 1 |a Enk, Alexander  |d 1963-  |e VerfasserIn  |0 (DE-588)1032757140  |0 (DE-627)739272535  |0 (DE-576)166173517  |4 aut 
700 1 |a Hänßle, Holger  |e VerfasserIn  |0 (DE-588)1074971531  |0 (DE-627)832791733  |0 (DE-576)443174598  |4 aut 
773 0 8 |i Enthalten in  |t European journal of cancer  |d Amsterdam [u.a.] : Elsevier, 1992  |g 227(2025), Artikel-ID 115706, Seite 1-8  |w (DE-627)266883400  |w (DE-600)1468190-0  |w (DE-576)090954173  |x 1879-0852  |7 nnas  |a Identifying melanoma among benign simulators is there a role for deep learning convolutional neural networks? (MelSim Study) 
773 1 8 |g volume:227  |g year:2025  |g elocationid:115706  |g pages:1-8  |g extent:8  |a Identifying melanoma among benign simulators is there a role for deep learning convolutional neural networks? (MelSim Study) 
856 4 0 |u https://doi.org/10.1016/j.ejca.2025.115706  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0959804925004885  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260122 
993 |a Article 
994 |a 2025 
998 |g 1074971531  |a Hänßle, Holger  |m 1074971531:Hänßle, Holger  |d 910000  |d 911300  |e 910000PH1074971531  |e 911300PH1074971531  |k 0/910000/  |k 1/910000/911300/  |p 7  |y j 
998 |g 1032757140  |a Enk, Alexander  |m 1032757140:Enk, Alexander  |d 910000  |d 911300  |e 910000PE1032757140  |e 911300PE1032757140  |k 0/910000/  |k 1/910000/911300/  |p 6 
998 |g 1216661227  |a Kommoss, Katharina  |m 1216661227:Kommoss, Katharina  |d 910000  |d 911300  |e 910000PK1216661227  |e 911300PK1216661227  |k 0/910000/  |k 1/910000/911300/  |p 3 
998 |g 1038218993  |a Winkler, Julia K.  |m 1038218993:Winkler, Julia K.  |d 910000  |d 911300  |d 50000  |e 910000PW1038218993  |e 911300PW1038218993  |e 50000PW1038218993  |k 0/910000/  |k 1/910000/911300/  |k 0/50000/  |p 2 
998 |g 1276293097  |a Vollmer, Anastasia S.  |m 1276293097:Vollmer, Anastasia S.  |d 910000  |d 911300  |e 910000PV1276293097  |e 911300PV1276293097  |k 0/910000/  |k 1/910000/911300/  |p 1  |x j 
999 |a KXP-PPN1949987841  |e 4857221667 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1949987841","note":["Gesehen am 22.01.2026"],"name":{"displayForm":["A.S. Vollmer, J.K. Winkler, K.S. Kommoss, A. Blum, W. Stolz, A. Enk, H.A. Haenssle"]},"origin":[{"dateIssuedDisp":"10 August 2025","dateIssuedKey":"2025"}],"id":{"eki":["1949987841"],"doi":["10.1016/j.ejca.2025.115706"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"relHost":[{"disp":"Identifying melanoma among benign simulators is there a role for deep learning convolutional neural networks? (MelSim Study)European journal of cancer","note":["Gesehen am 21.03.24","Ungezählte Beil.: Supplement"],"pubHistory":["28.1992 -"],"recId":"266883400","origin":[{"publisher":"Elsevier ; Pergamon Press","dateIssuedKey":"1992","dateIssuedDisp":"1992-","publisherPlace":"Amsterdam [u.a.] ; [Erscheinungsort nicht ermittelbar]"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"corporate":[{"role":"isb","display":"European Organization for Research on Treatment of Cancer"},{"display":"European Association for Cancer Research","role":"isb"},{"display":"European School of Oncology","role":"isb"}],"language":["eng"],"id":{"eki":["266883400"],"issn":["1879-0852"],"zdb":["1468190-0"]},"titleAlt":[{"title":"EJC online"}],"title":[{"title_sort":"European journal of cancer","title":"European journal of cancer"}],"part":{"year":"2025","extent":"8","volume":"227","pages":"1-8","text":"227(2025), Artikel-ID 115706, Seite 1-8"}}],"person":[{"family":"Vollmer","display":"Vollmer, Anastasia S.","given":"Anastasia S.","role":"aut"},{"given":"Julia K.","display":"Winkler, Julia K.","family":"Winkler","role":"aut"},{"role":"aut","display":"Kommoss, Katharina","family":"Kommoss","given":"Katharina"},{"given":"Andreas","family":"Blum","display":"Blum, Andreas","role":"aut"},{"family":"Stolz","display":"Stolz, Wilhelm","given":"Wilhelm","role":"aut"},{"role":"aut","display":"Enk, Alexander","family":"Enk","given":"Alexander"},{"role":"aut","family":"Hänßle","display":"Hänßle, Holger","given":"Holger"}],"title":[{"title":"Identifying melanoma among benign simulators","subtitle":"is there a role for deep learning convolutional neural networks? (MelSim Study)","title_sort":"Identifying melanoma among benign simulators"}],"physDesc":[{"noteIll":"Diagramme, Illustrationen","extent":"8 S."}]} 
SRT |a VOLLMERANAIDENTIFYIN1020