Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems

Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kowall, Chris (VerfasserIn) , Marciniak-Czochra, Anna (VerfasserIn) , Münnich, Finn (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 December 2025
In: Journal of differential equations
Year: 2025, Jahrgang: 448, Pages: 1-47
ISSN:1090-2732
DOI:10.1016/j.jde.2025.113704
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jde.2025.113704
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039625007314
Volltext
Verfasserangaben:Chris Kowall, Anna Marciniak-Czochra, Finn Münnich

MARC

LEADER 00000naa a2200000 c 4500
001 1950193411
003 DE-627
005 20260126114210.0
007 cr uuu---uuuuu
008 260126s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jde.2025.113704  |2 doi 
035 |a (DE-627)1950193411 
035 |a (DE-599)KXP1950193411 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kowall, Chris  |d 1988-  |e VerfasserIn  |0 (DE-588)1227328206  |0 (DE-627)1748362984  |4 aut 
245 1 0 |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems  |c Chris Kowall, Anna Marciniak-Czochra, Finn Münnich 
264 1 |c 15 December 2025 
300 |b Diagramme 
300 |a 47 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 20. August 2025, Artikelversion: 20. August 2025 
500 |a Gesehen am 26.01.2026 
520 |a Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instability conditions for bounded stationary solutions of reaction-diffusion-ODE systems consisting of m ODEs coupled with k reaction-diffusion equations. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces L∞(Ω)m+k,L∞(Ω)m×C(Ω‾)k and C(Ω‾)m+k, we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern. 
650 4 |a Asymptotic behavior 
650 4 |a Nonlinear (in)stability 
650 4 |a Pattern formation 
650 4 |a Reaction-diffusion equation 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Münnich, Finn  |e VerfasserIn  |0 (DE-588)1277784639  |0 (DE-627)1830819259  |4 aut 
773 0 8 |i Enthalten in  |t Journal of differential equations  |d Orlando, Fla. : Elsevier, 1965  |g 448(2025) vom: Dez., Artikel-ID 113704, Seite 1-47  |h Online-Ressource  |w (DE-627)266892566  |w (DE-600)1469173-5  |w (DE-576)103373209  |x 1090-2732  |7 nnas  |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems 
773 1 8 |g volume:448  |g year:2025  |g month:12  |g elocationid:113704  |g pages:1-47  |g extent:47  |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems 
856 4 0 |u https://doi.org/10.1016/j.jde.2025.113704  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0022039625007314  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260126 
993 |a Article 
994 |a 2025 
998 |g 1277784639  |a Münnich, Finn  |m 1277784639:Münnich, Finn  |d 110000  |d 110400  |d 110000  |e 110000PM1277784639  |e 110400PM1277784639  |e 110000PM1277784639  |k 0/110000/  |k 1/110000/110400/  |k 0/110000/  |p 3  |y j 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110400  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1950193411  |e 4860729072 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedDisp":"15 December 2025","dateIssuedKey":"2025"}],"note":["Online verfügbar: 20. August 2025, Artikelversion: 20. August 2025","Gesehen am 26.01.2026"],"title":[{"title":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems","title_sort":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"role":"aut","given":"Chris","family":"Kowall","display":"Kowall, Chris"},{"given":"Anna","role":"aut","family":"Marciniak-Czochra","display":"Marciniak-Czochra, Anna"},{"role":"aut","given":"Finn","family":"Münnich","display":"Münnich, Finn"}],"id":{"doi":["10.1016/j.jde.2025.113704"],"eki":["1950193411"]},"relHost":[{"id":{"issn":["1090-2732"],"eki":["266892566"],"zdb":["1469173-5"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1965 -"],"recId":"266892566","note":["Gesehen am 16.07.13"],"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedKey":"1965"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2025","pages":"1-47","text":"448(2025) vom: Dez., Artikel-ID 113704, Seite 1-47","extent":"47","volume":"448"},"language":["eng"],"disp":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systemsJournal of differential equations"}],"physDesc":[{"extent":"47 S.","noteIll":"Diagramme"}],"name":{"displayForm":["Chris Kowall, Anna Marciniak-Czochra, Finn Münnich"]},"recId":"1950193411"} 
SRT |a KOWALLCHRINONLINEARS1520