Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems
Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instab...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 December 2025
|
| In: |
Journal of differential equations
Year: 2025, Jahrgang: 448, Pages: 1-47 |
| ISSN: | 1090-2732 |
| DOI: | 10.1016/j.jde.2025.113704 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jde.2025.113704 Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S0022039625007314 |
| Verfasserangaben: | Chris Kowall, Anna Marciniak-Czochra, Finn Münnich |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1950193411 | ||
| 003 | DE-627 | ||
| 005 | 20260126114210.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 260126s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.jde.2025.113704 |2 doi | |
| 035 | |a (DE-627)1950193411 | ||
| 035 | |a (DE-599)KXP1950193411 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Kowall, Chris |d 1988- |e VerfasserIn |0 (DE-588)1227328206 |0 (DE-627)1748362984 |4 aut | |
| 245 | 1 | 0 | |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems |c Chris Kowall, Anna Marciniak-Czochra, Finn Münnich |
| 264 | 1 | |c 15 December 2025 | |
| 300 | |b Diagramme | ||
| 300 | |a 47 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online verfügbar: 20. August 2025, Artikelversion: 20. August 2025 | ||
| 500 | |a Gesehen am 26.01.2026 | ||
| 520 | |a Reaction-diffusion-ODE systems are emerging in modeling of biological pattern formation based on the coupling of diffusive and non-diffusive spatially heterogeneous processes. They may exhibit patterns with singularities such as jump-discontinuities. This work provides nonlinear stability and instability conditions for bounded stationary solutions of reaction-diffusion-ODE systems consisting of m ODEs coupled with k reaction-diffusion equations. We characterize the spectrum of the linearized operator and relate its spectral properties to the corresponding semigroup properties. Considering the function spaces L∞(Ω)m+k,L∞(Ω)m×C(Ω‾)k and C(Ω‾)m+k, we establish a sign condition on the spectral bound of the linearized operator, which implies nonlinear stability or instability of the stationary pattern. | ||
| 650 | 4 | |a Asymptotic behavior | |
| 650 | 4 | |a Nonlinear (in)stability | |
| 650 | 4 | |a Pattern formation | |
| 650 | 4 | |a Reaction-diffusion equation | |
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 700 | 1 | |a Münnich, Finn |e VerfasserIn |0 (DE-588)1277784639 |0 (DE-627)1830819259 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of differential equations |d Orlando, Fla. : Elsevier, 1965 |g 448(2025) vom: Dez., Artikel-ID 113704, Seite 1-47 |h Online-Ressource |w (DE-627)266892566 |w (DE-600)1469173-5 |w (DE-576)103373209 |x 1090-2732 |7 nnas |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems |
| 773 | 1 | 8 | |g volume:448 |g year:2025 |g month:12 |g elocationid:113704 |g pages:1-47 |g extent:47 |a Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.jde.2025.113704 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |7 0 |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0022039625007314 |x Verlag |z kostenfrei |3 Volltext |7 0 |
| 951 | |a AR | ||
| 992 | |a 20260126 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1277784639 |a Münnich, Finn |m 1277784639:Münnich, Finn |d 110000 |d 110400 |d 110000 |e 110000PM1277784639 |e 110400PM1277784639 |e 110000PM1277784639 |k 0/110000/ |k 1/110000/110400/ |k 0/110000/ |p 3 |y j | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110400 |e 110000PM1044379626 |e 110400PM1044379626 |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN1950193411 |e 4860729072 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedDisp":"15 December 2025","dateIssuedKey":"2025"}],"note":["Online verfügbar: 20. August 2025, Artikelversion: 20. August 2025","Gesehen am 26.01.2026"],"title":[{"title":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems","title_sort":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systems"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"person":[{"role":"aut","given":"Chris","family":"Kowall","display":"Kowall, Chris"},{"given":"Anna","role":"aut","family":"Marciniak-Czochra","display":"Marciniak-Czochra, Anna"},{"role":"aut","given":"Finn","family":"Münnich","display":"Münnich, Finn"}],"id":{"doi":["10.1016/j.jde.2025.113704"],"eki":["1950193411"]},"relHost":[{"id":{"issn":["1090-2732"],"eki":["266892566"],"zdb":["1469173-5"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["1.1965 -"],"recId":"266892566","note":["Gesehen am 16.07.13"],"title":[{"title":"Journal of differential equations","title_sort":"Journal of differential equations"}],"origin":[{"publisherPlace":"Orlando, Fla. ; New York, NY [u.a.] ; Orlando, Fla.","dateIssuedDisp":"1965-","publisher":"Elsevier ; Academic Press ; Academic Press","dateIssuedKey":"1965"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"year":"2025","pages":"1-47","text":"448(2025) vom: Dez., Artikel-ID 113704, Seite 1-47","extent":"47","volume":"448"},"language":["eng"],"disp":"Nonlinear stability results for stationary solutions of reaction-diffusion-ODE systemsJournal of differential equations"}],"physDesc":[{"extent":"47 S.","noteIll":"Diagramme"}],"name":{"displayForm":["Chris Kowall, Anna Marciniak-Czochra, Finn Münnich"]},"recId":"1950193411"} | ||
| SRT | |a KOWALLCHRINONLINEARS1520 | ||