Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks

Discovering novel drug candidate molecules is a fundamental step in drug development. Generative deep learning models can sample new molecular structures from learned probability distributions; however, their practical use in drug discovery hinges on generating compounds tailored to a specific targe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ünlü, Atabey (VerfasserIn) , Çevrim, Elif (VerfasserIn) , Yiğit, Melih Gökay (VerfasserIn) , Sarıgün, Ahmet (VerfasserIn) , Çelikbilek, Hayriye (VerfasserIn) , Bayram, Osman (VerfasserIn) , Kahraman, Deniz Cansen (VerfasserIn) , Olğaç, Abdurrahman (VerfasserIn) , Rifaioglu, Ahmet (VerfasserIn) , Banoğlu, Erden (VerfasserIn) , Doğan, Tunca (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 15 September 2025
In: Nature machine intelligence
Year: 2025, Jahrgang: 7, Heft: 9, Pages: 1524-1540
ISSN:2522-5839
DOI:10.1038/s42256-025-01082-y
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s42256-025-01082-y
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s42256-025-01082-y
Volltext
Verfasserangaben:Atabey Ünlü, Elif Çevrim, Melih Gökay Yiğit, Ahmet Sarıgün, Hayriye Çelikbilek, Osman Bayram, Deniz Cansen Kahraman, Abdurrahman Olğaç, Ahmet Sureyya Rifaioglu, Erden Banoğlu & Tunca Doğan

MARC

LEADER 00000naa a2200000 c 4500
001 1950203611
003 DE-627
005 20260126124555.0
007 cr uuu---uuuuu
008 260126s2025 xx |||||o 00| ||eng c
024 7 |a 10.1038/s42256-025-01082-y  |2 doi 
035 |a (DE-627)1950203611 
035 |a (DE-599)KXP1950203611 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Ünlü, Atabey  |e VerfasserIn  |0 (DE-588)1387983903  |0 (DE-627)1950204340  |4 aut 
245 1 0 |a Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks  |c Atabey Ünlü, Elif Çevrim, Melih Gökay Yiğit, Ahmet Sarıgün, Hayriye Çelikbilek, Osman Bayram, Deniz Cansen Kahraman, Abdurrahman Olğaç, Ahmet Sureyya Rifaioglu, Erden Banoğlu & Tunca Doğan 
264 1 |c 15 September 2025 
300 |b Illustrationen, Diagramme 
300 |a 23 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.01.2026 
520 |a Discovering novel drug candidate molecules is a fundamental step in drug development. Generative deep learning models can sample new molecular structures from learned probability distributions; however, their practical use in drug discovery hinges on generating compounds tailored to a specific target molecule. Here we introduce DrugGEN, an end-to-end generative system for the de novo design of drug candidate molecules that interact with a selected protein. The proposed method represents molecules as graphs and processes them using a generative adversarial network that comprises graph transformer layers. Trained on large datasets of drug-like compounds and target-specific bioactive molecules, DrugGEN designed candidate inhibitors for AKT1, a kinase crucial in many cancers. Docking and molecular dynamics simulations suggest that the generated compounds effectively bind to AKT1, and attention maps provide insights into the model’s reasoning. Furthermore, selected de novo molecules were synthesized and shown to inhibit AKT1 at low micromolar concentrations in the context of in vitro enzymatic assays. These results demonstrate the potential of DrugGEN for designing target-specific molecules. Using the open-access DrugGEN codebase, researchers can retrain the model for other druggable proteins, provided a dataset of known bioactive molecules is available. 
650 4 |a Computational science 
650 4 |a Machine learning 
700 1 |a Çevrim, Elif  |e VerfasserIn  |4 aut 
700 1 |a Yiğit, Melih Gökay  |e VerfasserIn  |4 aut 
700 1 |a Sarıgün, Ahmet  |e VerfasserIn  |4 aut 
700 1 |a Çelikbilek, Hayriye  |e VerfasserIn  |4 aut 
700 1 |a Bayram, Osman  |e VerfasserIn  |4 aut 
700 1 |a Kahraman, Deniz Cansen  |e VerfasserIn  |4 aut 
700 1 |a Olğaç, Abdurrahman  |e VerfasserIn  |4 aut 
700 1 |a Rifaioglu, Ahmet  |e VerfasserIn  |0 (DE-588)1300369957  |0 (DE-627)1858156408  |4 aut 
700 1 |a Banoğlu, Erden  |e VerfasserIn  |4 aut 
700 1 |a Doğan, Tunca  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Nature machine intelligence  |d [London] : Springer Nature Publishing, 2019  |g 7(2025), 9 vom: Sept., Seite 1524-1540  |h Online-Ressource  |w (DE-627)1025147669  |w (DE-600)2933875-X  |w (DE-576)506804771  |x 2522-5839  |7 nnas  |a Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks 
773 1 8 |g volume:7  |g year:2025  |g number:9  |g month:09  |g pages:1524-1540  |g extent:23  |a Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks 
856 4 0 |u https://doi.org/10.1038/s42256-025-01082-y  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://www.nature.com/articles/s42256-025-01082-y  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
992 |a 20260126 
993 |a Article 
994 |a 2025 
998 |g 1300369957  |a Rifaioğlu, Ahmet  |m 1300369957:Rifaioğlu, Ahmet  |d 910000  |d 912900  |e 910000PR1300369957  |e 912900PR1300369957  |k 0/910000/  |k 1/910000/912900/  |p 9 
999 |a KXP-PPN1950203611  |e 4860746740 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 26.01.2026"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"15 September 2025"}],"title":[{"title_sort":"Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks","title":"Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks"}],"language":["eng"],"person":[{"role":"aut","given":"Atabey","display":"Ünlü, Atabey","family":"Ünlü"},{"display":"Çevrim, Elif","family":"Çevrim","given":"Elif","role":"aut"},{"role":"aut","given":"Melih Gökay","display":"Yiğit, Melih Gökay","family":"Yiğit"},{"given":"Ahmet","role":"aut","family":"Sarıgün","display":"Sarıgün, Ahmet"},{"given":"Hayriye","role":"aut","display":"Çelikbilek, Hayriye","family":"Çelikbilek"},{"given":"Osman","role":"aut","display":"Bayram, Osman","family":"Bayram"},{"display":"Kahraman, Deniz Cansen","family":"Kahraman","role":"aut","given":"Deniz Cansen"},{"display":"Olğaç, Abdurrahman","family":"Olğaç","role":"aut","given":"Abdurrahman"},{"given":"Ahmet","role":"aut","display":"Rifaioglu, Ahmet","family":"Rifaioglu"},{"display":"Banoğlu, Erden","family":"Banoğlu","given":"Erden","role":"aut"},{"family":"Doğan","display":"Doğan, Tunca","role":"aut","given":"Tunca"}],"id":{"eki":["1950203611"],"doi":["10.1038/s42256-025-01082-y"]},"relHost":[{"id":{"zdb":["2933875-X"],"issn":["2522-5839"],"eki":["1025147669"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"1025147669","pubHistory":["Volume 1, no. 1 (January 2019)-"],"part":{"text":"7(2025), 9 vom: Sept., Seite 1524-1540","pages":"1524-1540","year":"2025","volume":"7","extent":"23","issue":"9"},"note":["Gesehen am 30.04.25"],"origin":[{"dateIssuedDisp":"[2019]-","publisherPlace":"[London]","publisher":"Springer Nature Publishing"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title_sort":"Nature machine intelligence","title":"Nature machine intelligence"}],"language":["eng"],"disp":"Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networksNature machine intelligence"}],"physDesc":[{"extent":"23 S.","noteIll":"Illustrationen, Diagramme"}],"name":{"displayForm":["Atabey Ünlü, Elif Çevrim, Melih Gökay Yiğit, Ahmet Sarıgün, Hayriye Çelikbilek, Osman Bayram, Deniz Cansen Kahraman, Abdurrahman Olğaç, Ahmet Sureyya Rifaioglu, Erden Banoğlu & Tunca Doğan"]},"recId":"1950203611"} 
SRT |a UENLUEATABTARGETSPEC1520