Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data

Sequencing-based spatial transcriptomics (sST) techniques with high resolution enable transcriptome-wide RNA capture at subcellular resolution. Although new cell segmentation methods for sST data are continually being developed, accurately assigning RNA spots to corresponding cells still presents si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ding, Renpeng (VerfasserIn) , Celikay, Kerem (VerfasserIn) , Ni, Ming (VerfasserIn) , Hou, Yong (VerfasserIn) , Zhou, Yan (VerfasserIn) , Rohr, Karl (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 10 January 2026
In: Small Methods
Year: 2026, Jahrgang: 10, Heft: 1, Pages: 1-15
ISSN:2366-9608
DOI:10.1002/smtd.202500885
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/smtd.202500885
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202500885
Volltext
Verfasserangaben:Renpeng Ding, Kerem Celikay, Ming Ni, Yong Hou, Yan Zhou, and Karl Rohr

MARC

LEADER 00000naa a2200000 c 4500
001 1950289818
003 DE-627
005 20260127092552.0
007 cr uuu---uuuuu
008 260127s2026 xx |||||o 00| ||eng c
024 7 |a 10.1002/smtd.202500885  |2 doi 
035 |a (DE-627)1950289818 
035 |a (DE-599)KXP1950289818 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Ding, Renpeng  |e VerfasserIn  |0 (DE-588)138806569X  |0 (DE-627)1950290212  |4 aut 
245 1 0 |a Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data  |c Renpeng Ding, Kerem Celikay, Ming Ni, Yong Hou, Yan Zhou, and Karl Rohr 
264 1 |c 10 January 2026 
300 |b Illustrationen 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Zuerst veröffentlicht: 27. November 2025 
500 |a Gesehen am 27.01.2026 
520 |a Sequencing-based spatial transcriptomics (sST) techniques with high resolution enable transcriptome-wide RNA capture at subcellular resolution. Although new cell segmentation methods for sST data are continually being developed, accurately assigning RNA spots to corresponding cells still presents significant challenges and there is a lack of quality control methods. This work introduces a deep learning method for quality control of cell segmentation and improvement of the segmentation result. The proposed method exploits the subcellular spatial distribution patterns of different types of RNA by a deep neural network to assess the quality of segmented cells. The method identifies partially segmented cells typically due to low RNA capture or strong RNA diffusion as well as merged cells due to high cell density. In addition, the quality control method is combined with a Transformer-based cell segmentation method and it is shown that the cell segmentation performance improves by automatically removing low-quality segmented cells from the training dataset. The method is applied to both synthetic data and real Stereo-seq data, demonstrating its potential for quality control and enhancement of cell segmentation in sST data. 
650 4 |a cell segmentation 
650 4 |a quality control 
650 4 |a spatial transcriptomics 
650 4 |a subcellular RNA spatial distribution 
700 1 |a Celikay, Kerem  |e VerfasserIn  |0 (DE-588)1333563477  |0 (DE-627)1891933280  |4 aut 
700 1 |a Ni, Ming  |e VerfasserIn  |4 aut 
700 1 |a Hou, Yong  |e VerfasserIn  |4 aut 
700 1 |a Zhou, Yan  |e VerfasserIn  |4 aut 
700 1 |a Rohr, Karl  |e VerfasserIn  |0 (DE-588)137474466  |0 (DE-627)695829440  |0 (DE-576)303788593  |4 aut 
773 0 8 |i Enthalten in  |t Small Methods  |d Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA, 2017  |g 10(2026), 1 vom: Jan., Artikel-ID e00885, Seite 1-15  |h Online-Ressource  |w (DE-627)880235276  |w (DE-600)2884448-8  |w (DE-576)483498378  |x 2366-9608  |7 nnas  |a Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data 
773 1 8 |g volume:10  |g year:2026  |g number:1  |g month:01  |g elocationid:e00885  |g pages:1-15  |g extent:15  |a Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data 
856 4 0 |u https://doi.org/10.1002/smtd.202500885  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://onlinelibrary.wiley.com/doi/abs/10.1002/smtd.202500885  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
992 |a 20260127 
993 |a Article 
994 |a 2026 
998 |g 137474466  |a Rohr, Karl  |m 137474466:Rohr, Karl  |d 160000  |d 160100  |d 160000  |e 160000PR137474466  |e 160100PR137474466  |e 160000PR137474466  |k 0/160000/  |k 1/160000/160100/  |k 0/160000/  |p 3 
998 |g 1333563477  |a Celikay, Kerem  |m 1333563477:Celikay, Kerem  |d 700000  |d 716000  |e 700000PC1333563477  |e 716000PC1333563477  |k 0/700000/  |k 1/700000/716000/  |p 2 
998 |g 138806569X  |a Ding, Renpeng  |m 138806569X:Ding, Renpeng  |d 700000  |d 716000  |e 700000PD138806569X  |e 716000PD138806569X  |k 0/700000/  |k 1/700000/716000/  |p 1  |x j 
999 |a KXP-PPN1950289818  |e 4861196051 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Zuerst veröffentlicht: 27. November 2025","Gesehen am 27.01.2026"],"name":{"displayForm":["Renpeng Ding, Kerem Celikay, Ming Ni, Yong Hou, Yan Zhou, and Karl Rohr"]},"recId":"1950289818","origin":[{"dateIssuedDisp":"10 January 2026","dateIssuedKey":"2026"}],"person":[{"given":"Renpeng","family":"Ding","role":"aut","display":"Ding, Renpeng"},{"display":"Celikay, Kerem","role":"aut","family":"Celikay","given":"Kerem"},{"given":"Ming","family":"Ni","role":"aut","display":"Ni, Ming"},{"family":"Hou","given":"Yong","display":"Hou, Yong","role":"aut"},{"display":"Zhou, Yan","role":"aut","family":"Zhou","given":"Yan"},{"family":"Rohr","given":"Karl","display":"Rohr, Karl","role":"aut"}],"language":["eng"],"title":[{"title":"Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data","title_sort":"Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics data"}],"relHost":[{"note":["Gesehen am 09.05.22"],"disp":"Deep learning-based quality control using subcellular RNA spatial distribution patterns for cell segmentation in spatial transcriptomics dataSmall Methods","language":["eng"],"title":[{"title":"Small Methods","title_sort":"Small Methods"}],"physDesc":[{"extent":"Online-Ressource"}],"recId":"880235276","origin":[{"publisherPlace":"Weinheim","dateIssuedDisp":"[2017]-","publisher":"WILEY-VCH Verlag GmbH & Co. KGaA"}],"pubHistory":["Volume 1, issue 1/2 (February 13, 2017)-"],"part":{"text":"10(2026), 1 vom: Jan., Artikel-ID e00885, Seite 1-15","issue":"1","pages":"1-15","extent":"15","year":"2026","volume":"10"},"type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"eki":["880235276"],"doi":["10.1002/(ISSN)2366-9608"],"issn":["2366-9608"],"zdb":["2884448-8"]}}],"physDesc":[{"extent":"15 S.","noteIll":"Illustrationen"}],"id":{"doi":["10.1002/smtd.202500885"],"eki":["1950289818"]},"type":{"bibl":"article-journal","media":"Online-Ressource"}} 
SRT |a DINGRENPENDEEPLEARNI1020