Gravitational turbulence: the small-scale limit of the cold-dark-matter power spectrum

The matter power spectrum, 𝑃⁡(𝑘), is one of the fundamental quantities in the study of large-scale structure in cosmology. Here, we study its small-scale asymptotic limit, and show that for cold dark matter in 𝑑 spatial dimensions, 𝑃⁡(𝑘) has a universal 𝑘−𝑑 asymptotic scaling with the wave number 𝑘,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ginat, Yonadav Barry (VerfasserIn) , Nastac, Michael L. (VerfasserIn) , Ewart, Robert J. (VerfasserIn) , Konrad, Sara (VerfasserIn) , Bartelmann, Matthias (VerfasserIn) , Schekochihin, Alexander A. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 3 September, 2025
In: Physical review
Year: 2025, Jahrgang: 112, Heft: 6, Pages: 1-23
ISSN:2470-0029
DOI:10.1103/ychs-2d5p
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1103/ychs-2d5p
Verlag, kostenfrei, Volltext: https://link.aps.org/doi/10.1103/ychs-2d5p
Volltext
Verfasserangaben:Yonadav Barry Ginat, Michael L. Nastac, Robert J. Ewart, Sara Konrad, Matthias Bartelmann, and Alexander A. Schekochihin
Beschreibung
Zusammenfassung:The matter power spectrum, 𝑃⁡(𝑘), is one of the fundamental quantities in the study of large-scale structure in cosmology. Here, we study its small-scale asymptotic limit, and show that for cold dark matter in 𝑑 spatial dimensions, 𝑃⁡(𝑘) has a universal 𝑘−𝑑 asymptotic scaling with the wave number 𝑘, for 𝑘 ≫𝑘nl, where 𝑘−1nl denotes the length scale at which nonlinearities in gravitational interactions become important. We propose a theoretical explanation for this scaling, based on a nonperturbative analysis of the system’s phase-space structure. Gravitational collapse is shown to drive a turbulent phase-space flow of the quadratic Casimir invariant, where the linear and nonlinear time scales are balanced, and this balance dictates the 𝑘 dependence of the power spectrum. A parallel is drawn to Batchelor turbulence in hydrodynamics, where large scales mix smaller ones via tidal interactions. The 𝑘−𝑑 scaling is also derived by expressing 𝑃⁡(𝑘) as a phase-space integral in the framework of kinetic field theory, which is analyzed by the saddle-point method; the dominant critical points of this integral are precisely those where the time scales are balanced. The coldness of the dark-matter distribution function—its nonvanishing only on a 𝑑-dimensional submanifold of phase space—underpins both approaches. The theory is accompanied by 1D Vlasov-Poisson simulations, which confirm it.
Beschreibung:Gesehen am 27.01.2026
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/ychs-2d5p