Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma

Background & Aims - Advances in digital pathology and artificial intelligence (AI) are driving progress toward personalized clinical management. In hepatocellular carcinoma (HCC), AI-based models using digitized H&E slides can be a robust tool to predict outcome-related molecular profiles an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seraphin, Tobias Paul (VerfasserIn) , Mesropian, Agavni (VerfasserIn) , Žigutytė, Laura (VerfasserIn) , Brooks, James (VerfasserIn) , Mauro, Ezequiel (VerfasserIn) , Gris-Oliver, Albert (VerfasserIn) , Pinyol, Roser (VerfasserIn) , Montironi, Carla (VerfasserIn) , Balaseviciute, Ugne (VerfasserIn) , Piqué-Gili, Marta (VerfasserIn) , Huguet-Pradell, Júlia (VerfasserIn) , van Treeck, Marko (VerfasserIn) , Kallenbach, Michael (VerfasserIn) , Schneider, Anne Theres (VerfasserIn) , Roderburg, Christoph (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn) , Luedde, Tom (VerfasserIn) , Llovet, Josep M. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: December 2025
In: JHEP reports
Year: 2025, Jahrgang: 7, Heft: 12, Pages: 1-13
ISSN:2589-5559
DOI:10.1016/j.jhepr.2025.101592
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1016/j.jhepr.2025.101592
Verlag, kostenfrei, Volltext: https://www.sciencedirect.com/science/article/pii/S2589555925002745
Volltext
Verfasserangaben:Tobias Paul Seraphin, Agavni Mesropian, Laura Žigutytė, James Brooks, Ezequiel Mauro, Albert Gris-Oliver, Roser Pinyol, Carla Montironi, Ugne Balaseviciute, Marta Piqué-Gili, Júlia Huguet-Pradell, Marko van Treeck, Michael Kallenbach, Anne Theres Schneider, Christoph Roderburg, Jakob Nikolas Kather, Tom Luedde, Josep M. Llovet

MARC

LEADER 00000naa a2200000 c 4500
001 1950572226
003 DE-627
005 20260129102213.0
007 cr uuu---uuuuu
008 260129s2025 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jhepr.2025.101592  |2 doi 
035 |a (DE-627)1950572226 
035 |a (DE-599)KXP1950572226 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Seraphin, Tobias Paul  |d 1991-  |e VerfasserIn  |0 (DE-588)1274116899  |0 (DE-627)1823852971  |4 aut 
245 1 0 |a Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma  |c Tobias Paul Seraphin, Agavni Mesropian, Laura Žigutytė, James Brooks, Ezequiel Mauro, Albert Gris-Oliver, Roser Pinyol, Carla Montironi, Ugne Balaseviciute, Marta Piqué-Gili, Júlia Huguet-Pradell, Marko van Treeck, Michael Kallenbach, Anne Theres Schneider, Christoph Roderburg, Jakob Nikolas Kather, Tom Luedde, Josep M. Llovet 
264 1 |c December 2025 
300 |b Illustrationen 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 11. September 2025, Artikelversion: 11. November 2025 
500 |a Gesehen am 29.01.2026 
520 |a Background & Aims - Advances in digital pathology and artificial intelligence (AI) are driving progress toward personalized clinical management. In hepatocellular carcinoma (HCC), AI-based models using digitized H&E slides can be a robust tool to predict outcome-related molecular profiles and presence of microvascular invasion (mVI), with potential clinical utility. - Methods - A transformer-based deep-learning (DL) model was deployed using digitized H&E slides from 431 resected HCC cases (training cohort). Five-fold cross-validation was applied, and the model was tested on two external cohorts: TCGA-LIHC (n = 363) and advanced-stage HCC cohort (n = 64). - Results - The DL model effectively predicted outcome-related molecular profiles, distinguishing poor-prognosis (S1/S2, proliferation) from good-prognosis (S3, non-proliferation) subclasses. In internal cross-validation, mean areas under the curves (AUCs) were 0.75 for proliferation and 0.79 for non-proliferation subclasses. This performance was reproduced in the TCGA test set, with AUCs ranging from 0.72-0.80, and in the advanced-stage HCC cohort, with AUCs ranging from 0.76-0.81. In these test sets, the AI-predicted non-proliferation subclass was associated with a longer median OS compared with the proliferation subclass (5.8 vs. 3.5 years in TCGA; p = 0.02). For mVI prediction, the DL model achieved a mean AUC of 0.70 in the internal cross-validation and 0.62 in the TCGA. AI-predicted mVI was associated with shorter OS (4.9 vs. 7.6 years for non-mVI; p = 0.003) and an immunosuppressive microenvironment (p = 0.002). - Conclusions - Our H&E-based AI model enables accurate prediction of outcome-related molecular subtypes of poor prognosis and presence of mVI, offering a scalable and accessible tool to extract clinically relevant features from routine histology. - Impact and implications - Outcome-related molecular profiles and the presence of microvascular invasion (mVI) are critical determinants of prognosis and treatment decisions in hepatocellular carcinoma (HCC). This study presents an artificial intelligence (AI)-based method that analyzes routine H&E-stained slides and accurately predicts: (a) biologically relevant HCC molecular subtypes associated with patient outcomes, and (b) the presence of mVI, a well-established predictor of poor outcomes and risk of recurrence, that currently requires meticulous pathological assessment of multiple H&E slides. These AI tools can offer a scalable method to support personalized treatment decisions, such as transplant eligibility, trial enrollment, or neo/adjuvant therapy planning, and may improve clinical management of HCC. Our findings lay the groundwork for incorporating AI-assisted pathology into future prospective studies aimed at improving HCC clinical management. 
650 4 |a AI 
650 4 |a Deep learning 
650 4 |a Digital pathology 
650 4 |a HCC 
650 4 |a Molecular classes 
650 4 |a mVI 
650 4 |a Prognosis 
650 4 |a Tumor biology 
700 1 |a Mesropian, Agavni  |e VerfasserIn  |4 aut 
700 1 |a Žigutytė, Laura  |e VerfasserIn  |4 aut 
700 1 |a Brooks, James  |e VerfasserIn  |4 aut 
700 1 |a Mauro, Ezequiel  |e VerfasserIn  |4 aut 
700 1 |a Gris-Oliver, Albert  |e VerfasserIn  |4 aut 
700 1 |a Pinyol, Roser  |e VerfasserIn  |4 aut 
700 1 |a Montironi, Carla  |e VerfasserIn  |4 aut 
700 1 |a Balaseviciute, Ugne  |e VerfasserIn  |4 aut 
700 1 |a Piqué-Gili, Marta  |e VerfasserIn  |4 aut 
700 1 |a Huguet-Pradell, Júlia  |e VerfasserIn  |4 aut 
700 1 |a van Treeck, Marko  |e VerfasserIn  |4 aut 
700 1 |a Kallenbach, Michael  |e VerfasserIn  |4 aut 
700 1 |a Schneider, Anne Theres  |e VerfasserIn  |4 aut 
700 1 |a Roderburg, Christoph  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
700 1 |a Luedde, Tom  |e VerfasserIn  |4 aut 
700 1 |a Llovet, Josep M.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t JHEP reports  |d Amsterdam : Elsevier, 2019  |g 7(2025), 12 vom: Dez., Artikel-ID 101592, Seite 1-13  |h Online-Ressource  |w (DE-627)166592800X  |w (DE-600)2972660-8  |x 2589-5559  |7 nnas  |a Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma 
773 1 8 |g volume:7  |g year:2025  |g number:12  |g month:12  |g elocationid:101592  |g pages:1-13  |g extent:13  |a Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma 
856 4 0 |u https://doi.org/10.1016/j.jhepr.2025.101592  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589555925002745  |x Verlag  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260129 
993 |a Article 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 16 
999 |a KXP-PPN1950572226  |e 4864232695 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Tobias Paul Seraphin, Agavni Mesropian, Laura Žigutytė, James Brooks, Ezequiel Mauro, Albert Gris-Oliver, Roser Pinyol, Carla Montironi, Ugne Balaseviciute, Marta Piqué-Gili, Júlia Huguet-Pradell, Marko van Treeck, Michael Kallenbach, Anne Theres Schneider, Christoph Roderburg, Jakob Nikolas Kather, Tom Luedde, Josep M. Llovet"]},"id":{"eki":["1950572226"],"doi":["10.1016/j.jhepr.2025.101592"]},"recId":"1950572226","physDesc":[{"noteIll":"Illustrationen","extent":"13 S."}],"origin":[{"dateIssuedKey":"2025","dateIssuedDisp":"December 2025"}],"person":[{"display":"Seraphin, Tobias Paul","family":"Seraphin","role":"aut","given":"Tobias Paul"},{"family":"Mesropian","role":"aut","given":"Agavni","display":"Mesropian, Agavni"},{"family":"Žigutytė","role":"aut","given":"Laura","display":"Žigutytė, Laura"},{"display":"Brooks, James","role":"aut","given":"James","family":"Brooks"},{"role":"aut","given":"Ezequiel","family":"Mauro","display":"Mauro, Ezequiel"},{"family":"Gris-Oliver","role":"aut","given":"Albert","display":"Gris-Oliver, Albert"},{"display":"Pinyol, Roser","given":"Roser","role":"aut","family":"Pinyol"},{"role":"aut","given":"Carla","family":"Montironi","display":"Montironi, Carla"},{"family":"Balaseviciute","given":"Ugne","role":"aut","display":"Balaseviciute, Ugne"},{"family":"Piqué-Gili","given":"Marta","role":"aut","display":"Piqué-Gili, Marta"},{"display":"Huguet-Pradell, Júlia","family":"Huguet-Pradell","role":"aut","given":"Júlia"},{"display":"van Treeck, Marko","family":"van Treeck","given":"Marko","role":"aut"},{"display":"Kallenbach, Michael","role":"aut","given":"Michael","family":"Kallenbach"},{"display":"Schneider, Anne Theres","role":"aut","given":"Anne Theres","family":"Schneider"},{"role":"aut","given":"Christoph","family":"Roderburg","display":"Roderburg, Christoph"},{"display":"Kather, Jakob Nikolas","family":"Kather","role":"aut","given":"Jakob Nikolas"},{"display":"Luedde, Tom","given":"Tom","role":"aut","family":"Luedde"},{"display":"Llovet, Josep M.","given":"Josep M.","role":"aut","family":"Llovet"}],"relHost":[{"pubHistory":["Volume 1, issue (JMay 2019)-"],"name":{"displayForm":["EASL, European Association for the Study of the Liver"]},"origin":[{"publisher":"Elsevier","publisherPlace":"Amsterdam","dateIssuedDisp":"[2019]-"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"pages":"1-13","extent":"13","text":"7(2025), 12 vom: Dez., Artikel-ID 101592, Seite 1-13","issue":"12","year":"2025","volume":"7"},"title":[{"title_sort":"JHEP reports","title":"JHEP reports"}],"id":{"eki":["166592800X"],"issn":["2589-5559"],"zdb":["2972660-8"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"166592800X","disp":"Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinomaJHEP reports"}],"title":[{"title":"Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma","title_sort":"Artificial intelligence predicts outcome-related molecular profiles and vascular invasion in hepatocellular carcinoma"}],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Online verfügbar: 11. September 2025, Artikelversion: 11. November 2025","Gesehen am 29.01.2026"]} 
SRT |a SERAPHINTOARTIFICIAL2025