Local limit theorems and strong approximations for Robbins-Monro procedures
The Robbins-Monro algorithm is a recursive, simulation-based stochastic procedure to approximate the zeros of a function that can be written as an expectation. It is known that under some technical assumptions, Gaussian limit theorems approximate the stochastic performance of the algorithm. Here, we...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
[01 Oct 2025]
|
| In: |
Statistics
Year: 2025, Pages: 1-37 |
| ISSN: | 1029-4910 |
| DOI: | 10.1080/02331888.2025.2562301 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1080/02331888.2025.2562301 |
| Verfasserangaben: | Valentin Konakov, Enno Mammen & Lorick Huang |
MARC
| LEADER | 00000naa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 195071067X | ||
| 003 | DE-627 | ||
| 005 | 20260130141749.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 260130s2025 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/02331888.2025.2562301 |2 doi | |
| 035 | |a (DE-627)195071067X | ||
| 035 | |a (DE-599)KXP195071067X | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Konakov, Valentin |e VerfasserIn |0 (DE-588)1104703734 |0 (DE-627)86199339X |0 (DE-576)471269190 |4 aut | |
| 245 | 1 | 0 | |a Local limit theorems and strong approximations for Robbins-Monro procedures |c Valentin Konakov, Enno Mammen & Lorick Huang |
| 264 | 1 | |c [01 Oct 2025] | |
| 300 | |a 37 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 30.01.2026 | ||
| 520 | |a The Robbins-Monro algorithm is a recursive, simulation-based stochastic procedure to approximate the zeros of a function that can be written as an expectation. It is known that under some technical assumptions, Gaussian limit theorems approximate the stochastic performance of the algorithm. Here, we are interested in strong approximations for Robbins-Monro procedures. The main tool for getting them are local limit theorems, that is, studying the convergence of the density of the algorithm. The analysis relies on a version of parametrix techniques for Markov chains converging to diffusions. The main difficulty that arises here is the fact that the drift is unbounded. | ||
| 650 | 4 | |a 62-08 | |
| 650 | 4 | |a 65C20 | |
| 650 | 4 | |a 68W20 | |
| 650 | 4 | |a Robbins-Monro algorithm | |
| 650 | 4 | |a stochastic approximation | |
| 700 | 1 | |a Mammen, Enno |d 1955- |e VerfasserIn |0 (DE-588)170668606 |0 (DE-627)060788658 |0 (DE-576)13153159X |4 aut | |
| 700 | 1 | |a Huang, Lorick |e VerfasserIn |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Statistics |d London [u.a.] : Taylor & Francis, 1985 |g (2025), Seite 1-37 |h Online-Ressource |w (DE-627)325350310 |w (DE-600)2035635-3 |w (DE-576)099426684 |x 1029-4910 |7 nnas |a Local limit theorems and strong approximations for Robbins-Monro procedures |
| 773 | 1 | 8 | |g year:2025 |g pages:1-37 |g extent:37 |a Local limit theorems and strong approximations for Robbins-Monro procedures |
| 856 | 4 | 0 | |u https://doi.org/10.1080/02331888.2025.2562301 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |7 1 |
| 951 | |a AR | ||
| 992 | |a 20260130 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 170668606 |a Mammen, Enno |m 170668606:Mammen, Enno |d 110000 |d 110000 |d 110400 |e 110000PM170668606 |e 110000PM170668606 |e 110400PM170668606 |k 0/110000/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN195071067X |e 4866390387 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"195071067X","note":["Gesehen am 30.01.2026"],"origin":[{"dateIssuedDisp":"[01 Oct 2025]","dateIssuedKey":"2025"}],"name":{"displayForm":["Valentin Konakov, Enno Mammen & Lorick Huang"]},"person":[{"given":"Valentin","role":"aut","display":"Konakov, Valentin","family":"Konakov"},{"role":"aut","given":"Enno","family":"Mammen","display":"Mammen, Enno"},{"given":"Lorick","role":"aut","display":"Huang, Lorick","family":"Huang"}],"id":{"doi":["10.1080/02331888.2025.2562301"],"eki":["195071067X"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"physDesc":[{"extent":"37 S."}],"relHost":[{"pubHistory":["Volume 16, 1 (1985)-"],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Statistics","title_sort":"Statistics","subtitle":"a journal of theoretical and applied statistics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"zdb":["2035635-3"],"eki":["325350310"],"issn":["1029-4910"]},"origin":[{"publisherPlace":"London [u.a.] ; Berlin ; Newark, NJ [u.a.]","publisher":"Taylor & Francis ; Akademie-Verlag ; Gordon and Breach Publ. Group","dateIssuedDisp":"[1985]-"}],"part":{"pages":"1-37","extent":"37","year":"2025","text":"(2025), Seite 1-37"},"recId":"325350310","note":["Gesehen am 19.09.2022"],"language":["eng"],"disp":"Local limit theorems and strong approximations for Robbins-Monro proceduresStatistics"}],"title":[{"title_sort":"Local limit theorems and strong approximations for Robbins-Monro procedures","title":"Local limit theorems and strong approximations for Robbins-Monro procedures"}]} | ||
| SRT | |a KONAKOVVALLOCALLIMIT0120 | ||