Histopathological evaluation of abdominal aortic aneurysms with deep learning

Computational analysis of histopathological specimens holds promise in identifying biomarkers, elucidating disease mechanisms, and streamlining clinical diagnosis. However, the application of deep learning techniques in vascular pathology remains underexplored. Here, we present a comprehensive evalu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kolbinger, Fiona (VerfasserIn) , El Nahhas, Omar S. M. (VerfasserIn) , Nackenhorst, Maja Carina (VerfasserIn) , Brostjan, Christine (VerfasserIn) , Eilenberg, Wolf (VerfasserIn) , Busch, Albert (VerfasserIn) , Kather, Jakob Nikolas (VerfasserIn)
Dokumenttyp: Article (Journal) Editorial
Sprache:Englisch
Veröffentlicht: 16 September 2025
In: Diagnostic pathology
Year: 2025, Jahrgang: 20, Pages: 1-8
ISSN:1746-1596
DOI:10.1186/s13000-025-01684-5
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.1186/s13000-025-01684-5
Volltext
Verfasserangaben:Fiona R. Kolbinger, Omar S.M. El Nahhas, Maja Carina Nackenhorst, Christine Brostjan, Wolf Eilenberg, Albert Busch and Jakob Nikolas Kather

MARC

LEADER 00000naa a2200000 c 4500
001 1960354507
003 DE-627
005 20260209111403.0
007 cr uuu---uuuuu
008 260209s2025 xx |||||o 00| ||eng c
024 7 |a 10.1186/s13000-025-01684-5  |2 doi 
035 |a (DE-627)1960354507 
035 |a (DE-599)KXP1960354507 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Kolbinger, Fiona  |e VerfasserIn  |0 (DE-588)1201382440  |0 (DE-627)168495651X  |4 aut 
245 1 0 |a Histopathological evaluation of abdominal aortic aneurysms with deep learning  |c Fiona R. Kolbinger, Omar S.M. El Nahhas, Maja Carina Nackenhorst, Christine Brostjan, Wolf Eilenberg, Albert Busch and Jakob Nikolas Kather 
264 1 |c 16 September 2025 
300 |b Illustrationen 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.02.2026 
520 |a Computational analysis of histopathological specimens holds promise in identifying biomarkers, elucidating disease mechanisms, and streamlining clinical diagnosis. However, the application of deep learning techniques in vascular pathology remains underexplored. Here, we present a comprehensive evaluation of deep learning-based approaches to analyze digital whole-slide images of abdominal aortic aneurysm samples from 369 patients from three European centers. Deep learning demonstrated robust performance in predicting inflammatory characteristics, particularly in the adventitia, as well as fibrosis grade and remaining elastic fibers in the tunica media from Hematoxylin and Eosin (HE)-stained slides (mean AUC > 0.70 in two external test cohorts). Models trained on Elastica van Gieson (EvG)-stained slides overall performed similar to models trained on HE-stained WSI for detection of calcification and fibrosis. For prediction of inflammatory parameters, HE-trained models performed considerably superior to EvG-trained models. Overall, this study represents the first comprehensive evaluation of computational pathology in vascular disease and has the potential to contribute to improved understanding of abdominal aortic aneurysm pathophysiology and personalization of treatment strategies, particularly when integrated with radiological phenotypes and clinical outcomes. 
650 4 |a Abdominal aortic aneurysm 
650 4 |a Computational pathology 
650 4 |a Deep learning 
650 4 |a Vascular pathology 
700 1 |a El Nahhas, Omar S. M.  |e VerfasserIn  |4 aut 
700 1 |a Nackenhorst, Maja Carina  |e VerfasserIn  |4 aut 
700 1 |a Brostjan, Christine  |e VerfasserIn  |4 aut 
700 1 |a Eilenberg, Wolf  |e VerfasserIn  |4 aut 
700 1 |a Busch, Albert  |e VerfasserIn  |4 aut 
700 1 |a Kather, Jakob Nikolas  |d 1989-  |e VerfasserIn  |0 (DE-588)1064064914  |0 (DE-627)812897587  |0 (DE-576)423589091  |4 aut 
773 0 8 |i Enthalten in  |t Diagnostic pathology  |d [Erscheinungsort nicht ermittelbar] : BioMed Central, 2006  |g 20(2025), Artikel-ID 104, Seite 1-8  |h Online-Ressource  |w (DE-627)503328960  |w (DE-600)2210518-9  |w (DE-576)260587265  |x 1746-1596  |7 nnas  |a Histopathological evaluation of abdominal aortic aneurysms with deep learning 
773 1 8 |g volume:20  |g year:2025  |g elocationid:104  |g pages:1-8  |g extent:8  |a Histopathological evaluation of abdominal aortic aneurysms with deep learning 
856 4 0 |u https://doi.org/10.1186/s13000-025-01684-5  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext  |7 0 
951 |a AR 
992 |a 20260209 
993 |a Editorial 
994 |a 2025 
998 |g 1064064914  |a Kather, Jakob Nikolas  |m 1064064914:Kather, Jakob Nikolas  |d 910000  |d 910100  |e 910000PK1064064914  |e 910100PK1064064914  |k 0/910000/  |k 1/910000/910100/  |p 7  |y j 
999 |a KXP-PPN1960354507  |e 4911448709 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Histopathological evaluation of abdominal aortic aneurysms with deep learning","title":"Histopathological evaluation of abdominal aortic aneurysms with deep learning"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 09.02.2026"],"origin":[{"dateIssuedDisp":"16 September 2025","dateIssuedKey":"2025"}],"relHost":[{"disp":"Histopathological evaluation of abdominal aortic aneurysms with deep learningDiagnostic pathology","recId":"503328960","physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2210518-9"],"eki":["503328960"],"issn":["1746-1596"]},"title":[{"title_sort":"Diagnostic pathology","title":"Diagnostic pathology"}],"part":{"volume":"20","text":"20(2025), Artikel-ID 104, Seite 1-8","extent":"8","pages":"1-8","year":"2025"},"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"note":["Gesehen am 01.08.2019"],"origin":[{"publisher":"BioMed Central","publisherPlace":"[Erscheinungsort nicht ermittelbar]","dateIssuedKey":"2006","dateIssuedDisp":"2006-"}],"pubHistory":["1.2006 -"]}],"person":[{"display":"Kolbinger, Fiona","given":"Fiona","role":"aut","family":"Kolbinger"},{"given":"Omar S. M.","role":"aut","family":"El Nahhas","display":"El Nahhas, Omar S. M."},{"display":"Nackenhorst, Maja Carina","family":"Nackenhorst","given":"Maja Carina","role":"aut"},{"role":"aut","given":"Christine","family":"Brostjan","display":"Brostjan, Christine"},{"display":"Eilenberg, Wolf","family":"Eilenberg","role":"aut","given":"Wolf"},{"family":"Busch","role":"aut","given":"Albert","display":"Busch, Albert"},{"family":"Kather","role":"aut","given":"Jakob Nikolas","display":"Kather, Jakob Nikolas"}],"recId":"1960354507","physDesc":[{"noteIll":"Illustrationen","extent":"8 S."}],"id":{"eki":["1960354507"],"doi":["10.1186/s13000-025-01684-5"]},"name":{"displayForm":["Fiona R. Kolbinger, Omar S.M. El Nahhas, Maja Carina Nackenhorst, Christine Brostjan, Wolf Eilenberg, Albert Busch and Jakob Nikolas Kather"]}} 
SRT |a KOLBINGERFHISTOPATHO1620