Local central limit theorem for triangle counts in sparse random graphs

Let XHXHX_H be the number of copies of a fixed graph H in G(n,p). In 2016, Gilmer and Kopparty conjectured that a local central limit theorem should hold for XHXHX_H as long as H is connected, p≫n−1/m(H)p≫n−1/m(H)p\gg n^{-1/m(H)} and n2(1−p)≫1n2(1−p)≫1n^2(1-p)\gg 1, where m(H) denotes the m-density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Araújo, Pedro (VerfasserIn) , Mattos, Letícia (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 2026
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2026, Jahrgang: 180, Heft: 2, Pages: 459-475
ISSN:1469-8064
DOI:10.1017/S0305004125101345
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0305004125101345
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/local-central-limit-theorem-for-triangle-counts-in-sparse-random-graphs/BF46AAAEAD921D72294CAD42DC433AA8
Volltext
Verfasserangaben:By Pedro Araújo and Letícia Mattos

MARC

LEADER 00000naa a2200000 c 4500
001 1961051958
003 DE-627
005 20260213135725.0
007 cr uuu---uuuuu
008 260213s2026 xx |||||o 00| ||eng c
024 7 |a 10.1017/S0305004125101345  |2 doi 
035 |a (DE-627)1961051958 
035 |a (DE-599)KXP1961051958 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Araújo, Pedro  |e VerfasserIn  |0 (DE-588)1390149684  |0 (DE-627)1961052628  |4 aut 
245 1 0 |a Local central limit theorem for triangle counts in sparse random graphs  |c By Pedro Araújo and Letícia Mattos 
264 1 |c March 2026 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Online verfügbar: 14. November 2025 
500 |a Gesehen am 13.02.2026 
520 |a Let XHXHX_H be the number of copies of a fixed graph H in G(n,p). In 2016, Gilmer and Kopparty conjectured that a local central limit theorem should hold for XHXHX_H as long as H is connected, p≫n−1/m(H)p≫n−1/m(H)p\gg n^{-1/m(H)} and n2(1−p)≫1n2(1−p)≫1n^2(1-p)\gg 1, where m(H) denotes the m-density of H. Recently, Sah and Sawhney showed that the Gilmer-Kopparty conjecture holds for constant p. In this paper, we show that the Gilmer-Kopparty conjecture holds for triangle counts in the sparse range. More precisely, if p∈(4n−1/2,1/2)p∈(4n−1/2,1/2)p \in (4n^{-1/2}, 1/2), then supx∈L∣∣∣12π−−√e−x2/2−σ⋅P(X∗=x)∣∣∣=n−1/2+o(1)p1/2,supx∈L|12πe−x2/2−σ⋅P(X∗=x)|=n−1/2+o(1)p1/2, {} {} {}\sup_{x\in \mathcal{L}}\left| \dfrac{1}{\sqrt{2\pi}}e^{-x^2/2}-\sigma\cdot \mathbb{P}(X^* = x)\right|=n^{-1/2+o(1)}p^{1/2}, {} {}where σ2=Var(XK3)σ2=Var(XK3)\sigma^2 = \mathbb{V}\text{ar}(X_{K_3}), X∗=(XK3−E(XK3))/σX∗=(XK3−E(XK3))/σX^{*}=(X_{K_3}-\mathbb{E}(X_{K_3}))/\sigma and LL\mathcal{L} is the support of X∗X∗X^*. By combining our result with the results of Röllin-Ross and Gilmer-Kopparty, this establishes the Gilmer-Kopparty conjecture for triangle counts for n−1≪p<cn−1≪p<cn^{-1}\ll p \lt c, for any constant c∈(0,1)c∈(0,1)c\in (0,1). Our quantitative result is enough to prove that the triangle counts converge to an associated normal distribution also in the ℓ1ℓ1\ell_1-distance. This is the first local central limit theorem for subgraph counts above the so-called m2m2m_2-density threshold. 
650 4 |a 05C80 
650 4 |a 60E10 
650 4 |a 60F15 
700 1 |a Mattos, Letícia  |e VerfasserIn  |0 (DE-588)1369692781  |0 (DE-627)192905615X  |4 aut 
773 0 8 |i Enthalten in  |t Mathematical proceedings of the Cambridge Philosophical Society  |d Cambridge [u.a.] : Cambridge Univ. Press, 1975  |g 180(2026), 2 vom: Feb., Seite 459-475  |h Online-Ressource  |w (DE-627)300897928  |w (DE-600)1483586-1  |w (DE-576)081894880  |x 1469-8064  |7 nnas  |a Local central limit theorem for triangle counts in sparse random graphs 
773 1 8 |g volume:180  |g year:2026  |g number:2  |g month:02  |g pages:459-475  |g extent:17  |a Local central limit theorem for triangle counts in sparse random graphs 
856 4 0 |u https://doi.org/10.1017/S0305004125101345  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext  |7 1 
856 4 0 |u https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/local-central-limit-theorem-for-triangle-counts-in-sparse-random-graphs/BF46AAAEAD921D72294CAD42DC433AA8  |x Verlag  |z lizenzpflichtig  |3 Volltext  |7 1 
951 |a AR 
992 |a 20260213 
993 |a Article 
994 |a 2025 
998 |g 1369692781  |a Mattos, Letícia  |m 1369692781:Mattos, Letícia  |d 110000  |e 110000PM1369692781  |k 0/110000/  |p 2  |y j 
999 |a KXP-PPN1961051958  |e 4916071778 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Online verfügbar: 14. November 2025","Gesehen am 13.02.2026"],"id":{"doi":["10.1017/S0305004125101345"],"eki":["1961051958"]},"person":[{"given":"Pedro","family":"Araújo","role":"aut","display":"Araújo, Pedro"},{"given":"Letícia","family":"Mattos","role":"aut","display":"Mattos, Letícia"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"title":[{"title":"Local central limit theorem for triangle counts in sparse random graphs","title_sort":"Local central limit theorem for triangle counts in sparse random graphs"}],"recId":"1961051958","relHost":[{"recId":"300897928","origin":[{"dateIssuedKey":"1975","publisher":"Cambridge Univ. Press","dateIssuedDisp":"1975-","publisherPlace":"Cambridge [u.a.]"}],"corporate":[{"role":"isb","display":"Cambridge Philosophical Society"}],"part":{"volume":"180","pages":"459-475","extent":"17","text":"180(2026), 2 vom: Feb., Seite 459-475","year":"2026","issue":"2"},"note":["Gesehen am 08.09.25"],"title":[{"title":"Mathematical proceedings of the Cambridge Philosophical Society","title_sort":"Mathematical proceedings of the Cambridge Philosophical Society"}],"pubHistory":["Volume 77, issue 1 (January 1975)-"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Local central limit theorem for triangle counts in sparse random graphsMathematical proceedings of the Cambridge Philosophical Society","id":{"zdb":["1483586-1"],"issn":["1469-8064"],"eki":["300897928"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"origin":[{"dateIssuedDisp":"March 2026","dateIssuedKey":"2026"}],"name":{"displayForm":["By Pedro Araújo and Letícia Mattos"]},"physDesc":[{"extent":"17 S."}]} 
SRT |a ARAUJOPEDRLOCALCENTR2026