Local central limit theorem for triangle counts in sparse random graphs
Let XHXHX_H be the number of copies of a fixed graph H in G(n,p). In 2016, Gilmer and Kopparty conjectured that a local central limit theorem should hold for XHXHX_H as long as H is connected, p≫n−1/m(H)p≫n−1/m(H)p\gg n^{-1/m(H)} and n2(1−p)≫1n2(1−p)≫1n^2(1-p)\gg 1, where m(H) denotes the m-density...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
March 2026
|
| In: |
Mathematical proceedings of the Cambridge Philosophical Society
Year: 2026, Jahrgang: 180, Heft: 2, Pages: 459-475 |
| ISSN: | 1469-8064 |
| DOI: | 10.1017/S0305004125101345 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0305004125101345 Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/local-central-limit-theorem-for-triangle-counts-in-sparse-random-graphs/BF46AAAEAD921D72294CAD42DC433AA8 |
| Verfasserangaben: | By Pedro Araújo and Letícia Mattos |
MARC
| LEADER | 00000naa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1961051958 | ||
| 003 | DE-627 | ||
| 005 | 20260213135725.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 260213s2026 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1017/S0305004125101345 |2 doi | |
| 035 | |a (DE-627)1961051958 | ||
| 035 | |a (DE-599)KXP1961051958 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Araújo, Pedro |e VerfasserIn |0 (DE-588)1390149684 |0 (DE-627)1961052628 |4 aut | |
| 245 | 1 | 0 | |a Local central limit theorem for triangle counts in sparse random graphs |c By Pedro Araújo and Letícia Mattos |
| 264 | 1 | |c March 2026 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Online verfügbar: 14. November 2025 | ||
| 500 | |a Gesehen am 13.02.2026 | ||
| 520 | |a Let XHXHX_H be the number of copies of a fixed graph H in G(n,p). In 2016, Gilmer and Kopparty conjectured that a local central limit theorem should hold for XHXHX_H as long as H is connected, p≫n−1/m(H)p≫n−1/m(H)p\gg n^{-1/m(H)} and n2(1−p)≫1n2(1−p)≫1n^2(1-p)\gg 1, where m(H) denotes the m-density of H. Recently, Sah and Sawhney showed that the Gilmer-Kopparty conjecture holds for constant p. In this paper, we show that the Gilmer-Kopparty conjecture holds for triangle counts in the sparse range. More precisely, if p∈(4n−1/2,1/2)p∈(4n−1/2,1/2)p \in (4n^{-1/2}, 1/2), then supx∈L∣∣∣12π−−√e−x2/2−σ⋅P(X∗=x)∣∣∣=n−1/2+o(1)p1/2,supx∈L|12πe−x2/2−σ⋅P(X∗=x)|=n−1/2+o(1)p1/2, {} {} {}\sup_{x\in \mathcal{L}}\left| \dfrac{1}{\sqrt{2\pi}}e^{-x^2/2}-\sigma\cdot \mathbb{P}(X^* = x)\right|=n^{-1/2+o(1)}p^{1/2}, {} {}where σ2=Var(XK3)σ2=Var(XK3)\sigma^2 = \mathbb{V}\text{ar}(X_{K_3}), X∗=(XK3−E(XK3))/σX∗=(XK3−E(XK3))/σX^{*}=(X_{K_3}-\mathbb{E}(X_{K_3}))/\sigma and LL\mathcal{L} is the support of X∗X∗X^*. By combining our result with the results of Röllin-Ross and Gilmer-Kopparty, this establishes the Gilmer-Kopparty conjecture for triangle counts for n−1≪p<cn−1≪p<cn^{-1}\ll p \lt c, for any constant c∈(0,1)c∈(0,1)c\in (0,1). Our quantitative result is enough to prove that the triangle counts converge to an associated normal distribution also in the ℓ1ℓ1\ell_1-distance. This is the first local central limit theorem for subgraph counts above the so-called m2m2m_2-density threshold. | ||
| 650 | 4 | |a 05C80 | |
| 650 | 4 | |a 60E10 | |
| 650 | 4 | |a 60F15 | |
| 700 | 1 | |a Mattos, Letícia |e VerfasserIn |0 (DE-588)1369692781 |0 (DE-627)192905615X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Mathematical proceedings of the Cambridge Philosophical Society |d Cambridge [u.a.] : Cambridge Univ. Press, 1975 |g 180(2026), 2 vom: Feb., Seite 459-475 |h Online-Ressource |w (DE-627)300897928 |w (DE-600)1483586-1 |w (DE-576)081894880 |x 1469-8064 |7 nnas |a Local central limit theorem for triangle counts in sparse random graphs |
| 773 | 1 | 8 | |g volume:180 |g year:2026 |g number:2 |g month:02 |g pages:459-475 |g extent:17 |a Local central limit theorem for triangle counts in sparse random graphs |
| 856 | 4 | 0 | |u https://doi.org/10.1017/S0305004125101345 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |7 1 |
| 856 | 4 | 0 | |u https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/local-central-limit-theorem-for-triangle-counts-in-sparse-random-graphs/BF46AAAEAD921D72294CAD42DC433AA8 |x Verlag |z lizenzpflichtig |3 Volltext |7 1 |
| 951 | |a AR | ||
| 992 | |a 20260213 | ||
| 993 | |a Article | ||
| 994 | |a 2025 | ||
| 998 | |g 1369692781 |a Mattos, Letícia |m 1369692781:Mattos, Letícia |d 110000 |e 110000PM1369692781 |k 0/110000/ |p 2 |y j | ||
| 999 | |a KXP-PPN1961051958 |e 4916071778 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Online verfügbar: 14. November 2025","Gesehen am 13.02.2026"],"id":{"doi":["10.1017/S0305004125101345"],"eki":["1961051958"]},"person":[{"given":"Pedro","family":"Araújo","role":"aut","display":"Araújo, Pedro"},{"given":"Letícia","family":"Mattos","role":"aut","display":"Mattos, Letícia"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"language":["eng"],"title":[{"title":"Local central limit theorem for triangle counts in sparse random graphs","title_sort":"Local central limit theorem for triangle counts in sparse random graphs"}],"recId":"1961051958","relHost":[{"recId":"300897928","origin":[{"dateIssuedKey":"1975","publisher":"Cambridge Univ. Press","dateIssuedDisp":"1975-","publisherPlace":"Cambridge [u.a.]"}],"corporate":[{"role":"isb","display":"Cambridge Philosophical Society"}],"part":{"volume":"180","pages":"459-475","extent":"17","text":"180(2026), 2 vom: Feb., Seite 459-475","year":"2026","issue":"2"},"note":["Gesehen am 08.09.25"],"title":[{"title":"Mathematical proceedings of the Cambridge Philosophical Society","title_sort":"Mathematical proceedings of the Cambridge Philosophical Society"}],"pubHistory":["Volume 77, issue 1 (January 1975)-"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Local central limit theorem for triangle counts in sparse random graphsMathematical proceedings of the Cambridge Philosophical Society","id":{"zdb":["1483586-1"],"issn":["1469-8064"],"eki":["300897928"]},"language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"origin":[{"dateIssuedDisp":"March 2026","dateIssuedKey":"2026"}],"name":{"displayForm":["By Pedro Araújo and Letícia Mattos"]},"physDesc":[{"extent":"17 S."}]} | ||
| SRT | |a ARAUJOPEDRLOCALCENTR2026 | ||