Brown-von-Neumann-Nash dynamics: the continous strategy case

In John Nash’s proofs for the existence of (Nash) equilibria based on Brouwer’s theorem, an iteration mapping is used. A continuous- time analogue of the same mapping has been studied even earlier by Brown and von Neumann. This differential equation has recently been suggested as a plausible bounded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hofbauer, Josef (VerfasserIn) , Oechssler, Joerg (VerfasserIn) , Riedel, Frank (VerfasserIn)
Dokumenttyp: Article (Journal) Book/Monograph Arbeitspapier
Sprache:Englisch
Veröffentlicht: Heidelberg University of Heidelberg, Department of Economics December 14, 2005
Schriftenreihe:Discussion paper series / Universität Heidelberg, Department of Economics no. 424
In: Discussion paper series (no. 424)

Schlagworte:
Online-Zugang:Resolving-System, Volltext: http://hdl.handle.net/10419/127239
Verlag, Volltext: http://www.awi.uni-heidelberg.de/publications/papers/dp424.pdf
Volltext
Verfasserangaben:Josef Hofbauer, Jörg Oechssler and Frank Riedel
Beschreibung
Zusammenfassung:In John Nash’s proofs for the existence of (Nash) equilibria based on Brouwer’s theorem, an iteration mapping is used. A continuous- time analogue of the same mapping has been studied even earlier by Brown and von Neumann. This differential equation has recently been suggested as a plausible boundedly rational learning process in games. In the current paper we study this Brown-von Neumann-Nash dynamics for the case of continuous strategy spaces. We show that for continuous payoff functions, the set of rest points of the dynamics coincides with the set of Nash equilibria of the underlying game. We also study the asymptotic stability properties of rest points. While strict Nash equilibria may be unstable, we identify sufficient conditions for local and global asymptotic stability which use concepts developed in evolutionary game theory.
Beschreibung:Online Resource
Dokumenttyp:Systemvoraussetzungen: Acrobat Reader.