Semiparametric estimation with generated covariates

In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated covari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mammen, Enno (VerfasserIn) , Rothe, Christoph (VerfasserIn) , Schienle, Melanie (VerfasserIn)
Dokumenttyp: Book/Monograph Arbeitspapier
Sprache:Englisch
Veröffentlicht: Berlin SFB 649, Economic Risk 2011
Schriftenreihe:SFB 649 discussion paper 2011-064
In: SFB 649 discussion paper (2011-064)

Schlagworte:
Online-Zugang:Verlag, Volltext: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2011-064.pdf
Download aus dem Internet, Stand: 02.11.2011, Volltext: http://hdl.handle.net/10419/56726
Volltext
Verfasserangaben:Enno Mammen; Christoph Rothe; Melanie Schienle
Beschreibung
Zusammenfassung:In this paper, we study a general class of semiparametric optimization estimators of a vector-valued parameter. The criterion function depends on two types of infinite-dimensional nuisance parameters: a conditional expectation function that has been estimated nonparametrically using generated covariates, and another estimated function that is used to compute the generated covariates in the first place. We study the asymptotic properties of estimators in this class, which is a nonstandard problem due to the presence of generated covariates. We give conditions under which estimators are root-n consistent and asymptotically normal, and derive a general formula for the asymptotic variance. -- Semiparametric estimation ; generated covariates ; profiling ; propensity score
Beschreibung:Online Resource
Dokumenttyp:Systemvoraussetzungen: Acrobat Reader.