Generated covariates in nonparametric estimation: a short review

In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mammen, Enno (VerfasserIn) , Rothe, Christoph (VerfasserIn) , Schienle, Melanie (VerfasserIn)
Dokumenttyp: Book/Monograph Arbeitspapier
Sprache:Englisch
Veröffentlicht: Berlin SFB 649, Economic Risk 2012
Schriftenreihe:SFB 649 discussion paper 2012-042
In: SFB 649 discussion paper (2012,42)

Schlagworte:
Online-Zugang:Verlag, Volltext: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-042.pdf
Download aus dem Internet, Stand: 27.06.2012, Volltext: http://hdl.handle.net/10419/79567
Volltext
Verfasserangaben:Enno Mammen; Christoph Rothe; Melanie Schienle
Beschreibung
Zusammenfassung:In many applications, covariates are not observed but have to be estimated from data. We outline some regression-type models where such a situation occurs and discuss estimation of the regression function in this context.We review theoretical results on how asymptotic properties of nonparametric estimators differ in the presence of generated covariates from the standard case where all covariates are observed. These results also extend to settings where the focus of interest is on average functionals of the regression function. -- Nonparametric estimation ; generated covariates
Beschreibung:Online Resource
Dokumenttyp:Systemvoraussetzungen: Acrobat Reader.